OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18095–18105

Weaving the invisible thread: design of an optically invisible metamaterial fibre

Alessandro Tuniz, Boris T. Kuhlmey, Parry Y. Chen, and Simon C. Fleming  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 18095-18105 (2010)
http://dx.doi.org/10.1364/OE.18.018095


View Full Text Article

Enhanced HTML    Acrobat PDF (4049 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design of an invisible metamaterial fibre operating at optical frequencies, which could be fabricated by adapting existing fibre drawing techniques. The invisibility is realised by matching the refractive index of the metamaterial fibre with the surroundings. We present a general recipe for the fabrication of such fibres, and numerically characterise a specific example using hexagonally arranged silver nanowires in a silica background. We find that invisibility is highly sensitive to details of the metamaterial boundary, a problem that is likely to affect most invisibility and cloaking schemes.

© 2010 OSA

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: June 30, 2010
Revised Manuscript: August 4, 2010
Manuscript Accepted: August 5, 2010
Published: August 6, 2010

Citation
Alessandro Tuniz, Boris T. Kuhlmey, Parry Y. Chen, and Simon C. Fleming, "Weaving the invisible thread: design of an optically invisible metamaterial fibre," Opt. Express 18, 18095-18105 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18095


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ward, “Towards invisible glass,” Vacuum 22(9), 369–375 (1972). [CrossRef]
  2. R. L. Fante, M. T. McCormack, T. D. Syst, and M. A. Wilmington, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988). [CrossRef]
  3. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005). [CrossRef] [PubMed]
  4. A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007). [CrossRef] [PubMed]
  5. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009). [CrossRef] [PubMed]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  9. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef] [PubMed]
  10. N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007). [CrossRef] [PubMed]
  11. W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009). [CrossRef]
  12. Y. Fang and S. He, “Transparent structure consisting of metamaterial layers and matching layers,” Phys. Rev. A 78(2), 023813 (2008). [CrossRef]
  13. C. Yang, J. Yang, M. Huang, J. Shi, and J. Peng, “Electromagnetic cylindrical transparent devices with irregular cross section,” Radioengineering 19, 136–140 (2010).
  14. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008). [CrossRef] [PubMed]
  15. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010). [CrossRef]
  16. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008). [CrossRef]
  17. Y. Ruan, H. Ebendorff-Heidepriem, and T. M. Monro, “Subwavelength soft glass fibres with extremely small hole size for field enhancement,” in Proceedings of the Australasian Conference on Optics, Lasers and Spectroscopy and Australian Conference on Optical Fibre Technology (Adelaide, Australia, 2009).
  18. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef] [PubMed]
  19. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008). [CrossRef]
  20. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17(17), 14851–14864 (2009). [CrossRef] [PubMed]
  21. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010). [CrossRef]
  22. A. Tuniz, P. Chen, B. T. Kuhlmey, and S. C. Fleming, “Design of an optical hyperlens with metallic nanocylinders,” in Proceedings of META '10, 2nd International Conference on Metamaterials, Photonc Crystals and Plasmonics (Cairo, Egypt, 2010).
  23. P. Markos, and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, 2008), Chap. 14.
  24. R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, “The TEM mode and homogenization of doubly periodic structures,” J. Electromagn. Waves Appl. 11(7), 981–1012 (1997). [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  26. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965). [CrossRef]
  27. R. C. McPhedran, C. G. Poulton, N. A. Nicorovici, and A. B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material,” Proc. R. Soc. Lond. A 452(1953), 2231–2245 (1996). [CrossRef]
  28. L. C. Botten, N. A. P. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, and P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method,” J. Opt. Soc. Am. A 17(12), 2165–2176 (2000). [CrossRef]
  29. R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and K. A. Grubits, “Lattice sums for gratings and arrays,” J. Math. Phys. 41(11), 7808–7816 (2000). [CrossRef]
  30. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. De Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19(10), 2322–2330 (2002). [CrossRef]
  31. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19(10), 2331–2340 (2002). [CrossRef]
  32. D. Felbacq, G. Tayeb, and D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11(9), 2526–2538 (1994). [CrossRef]
  33. P. S. Kildal, A. A. Kishk, and A. Tengs, “Reduction of forward scattering from cylindrical objects using hardsurfaces,” IEEE Trans. Antenn. Propag. 44(11), 1509–1520 (1996). [CrossRef]
  34. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar cross section (New York: SciTech Publishing, 2004), Chapter 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited