OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18125–18137

Development of a 3D artificial compound eye

Lei Li and Allen Y. Yi  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 18125-18137 (2010)
http://dx.doi.org/10.1364/OE.18.018125


View Full Text Article

Enhanced HTML    Acrobat PDF (2690 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this research paper, in a major departure from conventional 2D micromachining processes, design and fabrication of a 3D compound eye system consisting of a 3D microprism array, an aperture array, and a microlens array were investigated. Specifically, the 3D microprism array on a curved surface was designed to steer the incident light from all three dimensions to a 2D plane for image formation. For each microprism, there is a corresponding microlens to focus the refracted light on the image plane. An aperture array was also implemented between the microprism array and the microlens array to eliminate cross-talk among the neighboring channels. In this system, 601 individual micro-assemblies consisting of microprisms and microlenses were constructed in a 20 mm diameter area. In this configuration, the maximum light deviation angle was determined to be 18.43°. This research demonstrated an innovative and integrated approach to fabricating true 3D micro and meso scale optical structures. This work also validated the feasibility of using ultraprecision machining process for 3D microoptical device fabrication. The technology demonstrated in this research has high potentials in optical sensing, vision research and many other optical and photonic applications.

© 2010 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1920) Optical design and fabrication : Diamond machining
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: May 4, 2010
Revised Manuscript: July 28, 2010
Manuscript Accepted: July 31, 2010
Published: August 9, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Lei Li and Allen Y. Yi, "Development of a 3D artificial compound eye," Opt. Express 18, 18125-18137 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18125


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Franceschini, J. M. Pichon, C. Blanes, and J. M. Brady, “From insect vision to robot vision,” Philos. Trans. R. Soc. London Ser. B 337(1281), 283–294 (1992). [CrossRef]
  2. J. Kim, K. H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005). [CrossRef] [PubMed]
  3. A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007). [CrossRef] [PubMed]
  4. S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33(11), 3649–3655 (1994). [CrossRef]
  5. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40(11), 1806–1813 (2001). [CrossRef]
  6. K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to-invariant processing,” Opt. Rev. 3(4), 264–268 (1996). [CrossRef]
  7. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express 13(3), 889–903 (2005). [CrossRef] [PubMed]
  8. K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst. 9(1), 32–37 (2000). [CrossRef]
  9. R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. Thomas, “High precision target tracking with a compound-eye image sensor,” In: Canadian conference on electrical and computer engineering 2004, San Jose, California, USA(2004).
  10. W. Maddern, and G. Wyeth, “Development of a hemispherical compound eye for egomotion estimation,” In: Australasian Conference on Robotics and Automation 2008, Canberra, Australia (2008).
  11. W.C. Sweatt, D.D. Gill, “Microoptical compound lens,” United States Patent, Patent No.: US 7,286,295 B1, (2007).
  12. F.M. Reininger, “Fiber coupled artificial compound eye,” United States Patent, Patent No.: 7,376,314 B2, (2008)
  13. D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007). [CrossRef] [PubMed]
  14. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006). [CrossRef] [PubMed]
  15. W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003). [CrossRef]
  16. L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009). [CrossRef]
  17. L. Li, A. Y. Yi, C. N. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006). [CrossRef]
  18. A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005). [CrossRef] [PubMed]
  19. L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010). [CrossRef]
  20. L. Li, L. J. Lee, J. M. Castro, and A. Y. Yi, “Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider,” J. Micromech. Microeng. 20(3), 035012 (2010). [CrossRef]
  21. L. Bergmann, and C. Schaefer, eds., by H. Niedrig, Optics of Waves and Particles (Walter de Gruyter, New York, 1999).
  22. S. H. Hong, K. S. Han, K. J. Byeon, H. Lee, and K. W. Choi, “Fabrication of sub-100 nm sized patterns on curved acryl substrate using a flexible stamp,” Jpn. J. Appl. Phys. 47(5), 3699–3701 (2008). [CrossRef]
  23. O. Lima, L. Tan, A. Goel, M. Negahban, and Z. Li, “Creating micro- and nanostructures on tubular and spherical surfaces,” J. Vac. Sci. Technol. B 25(6), 2412–2418 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited