OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18151–18157

Subwavelength focusing of light in the planar anisotropic metamaterials with zone plates

Guowei Ren, Zhian Lai, Changtao Wang, Qin Feng, Ling Liu, Kaipeng Liu, and Xiangang Luo  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18151-18157 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present here a structure with just a single slit covering the planar anisotropic metamaterial. The metamaterial has hyperbolic dispersion and can be realized using metal-dielectric multilayers. The structure combines the focusing performance of the zone plates and subwavelength resolution of the anisotropic metamaterials so that subwavelength focal spots can be obtained at the focal plane. The relationship between the focal spot size and slit width has been investigated, and a resolution of 36nm about 1/10 of 365nm incident wavelength is obtained with a 100nm wide single slit.

© 2010 OSA

OCIS Codes
(220.2560) Optical design and fabrication : Propagating methods
(230.4170) Optical devices : Multilayers
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: May 11, 2010
Revised Manuscript: June 27, 2010
Manuscript Accepted: July 26, 2010
Published: August 9, 2010

Guowei Ren, Zhian Lai, Changtao Wang, Qin Feng, Ling Liu, Kaipeng Liu, and Xiangang Luo, "Subwavelength focusing of light in the planar anisotropic metamaterials with zone plates," Opt. Express 18, 18151-18157 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, and E. Wolf, “Principles of Optics” (Cambridge U. Press, 1999).
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  3. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  4. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30(1), 75–77 (2005). [CrossRef] [PubMed]
  5. S. Feng and J. M. Elson, “Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms,” Opt. Express 14(1), 216–221 (2006). [CrossRef] [PubMed]
  6. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  7. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Objects Far-Field Optical Hyperlens Magnifying,” Science 315, 1686 (2007). [CrossRef] [PubMed]
  9. C. Wang, D. Gan, Y. Zhao, C. Du, and X. Luo, “Demagnifing super resolution imaging based on surface plasmon structures,” Opt. Express 16(8), 5427–5434 (2008). [CrossRef] [PubMed]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  11. W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, and X. Luo, “Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial,” Opt. Express 16(25), 21142–21148 (2008). [CrossRef] [PubMed]
  12. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317(5840), 927–929 (2007). [CrossRef] [PubMed]
  13. A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511–513 (2008). [CrossRef] [PubMed]
  14. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express 15(2), 508–523 (2007). [CrossRef] [PubMed]
  15. S. Thongrattanasiri and V. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett. 34(7), 7 (2009). [CrossRef]
  16. B. Wood, J. B. Pendry, and D. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006). [CrossRef]
  17. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 24 (2007).
  18. E. Palik, ed., “The Handbook of Optical Constants of Solids” (AP, 1985).
  19. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006). [CrossRef]
  20. S. Tretyakov, “Analytical Modeling in Applied Electromagnetics,” (Artech House, Norwood, MA, 2000).
  21. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957). [CrossRef]
  22. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780 (2004). [CrossRef]
  23. C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, “Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films,” Opt. Express 16(6), 4217–4227 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited