OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18164–18170

Photonic crystal biosensor based on angular spectrum analysis

Elewout Hallynck and Peter Bienstman  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18164-18170 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The need for cost effective and reliable biosensors in e.g. medical applications is an ever growing and everlasting one. Not only do we strive to increase sensitivity and detection limit of such sensors; ease of fabrication or implementation are equally important. In this work, we propose a novel, photonic crystal based biosensor that is able to operate at a single frequency, contrary to resonance based sensors. In a certain frequency range, guided photonic crystal modes can couple to free space modes resulting in a Lorentzian shape in the angular spectrum. This Lorentzian can shift due to refractive index changes and simulations have shown sensitivities of 65° per refractive index unit and more.

© 2010 Optical Society of America

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(130.6010) Integrated optics : Sensors
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:

Original Manuscript: May 20, 2010
Revised Manuscript: July 12, 2010
Manuscript Accepted: July 18, 2010
Published: August 9, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Elewout Hallynck and Peter Bienstman, "Photonic crystal biosensor based on angular spectrum analysis," Opt. Express 18, 18164-18170 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009). [CrossRef]
  2. A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34, 3598–3600 (2009). [CrossRef] [PubMed]
  3. P. Debackere, R. Baets, and P. Bienstman, “Bulk sensing experiments using a surface-plasmon interferometer,” Opt. Lett. 34, 2858–2860 (2009). [CrossRef] [PubMed]
  4. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009). [CrossRef]
  5. T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009). [CrossRef]
  6. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef] [PubMed]
  7. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008), 2nd ed.
  8. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004). [CrossRef] [PubMed]
  9. S. Xiao, and N. A. Mortensen, “Highly dispersive photonic band-gap-edge optofluidic biosensors,” J. Europ. Opt. Soc. Rap. Public. 1, 06026 (2006). [CrossRef]
  10. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17, 18371–18380 (2009). [CrossRef] [PubMed]
  11. S. Fan, and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002). [CrossRef]
  12. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  13. A. Hessel, and A. A. Oliner, “A new theory of wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  14. A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010). [CrossRef]
  15. N. L. Thomas, R. Houdré, M. V. Kotlyar, D. O’Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Am. B 24, 2964–2971 (2007). [CrossRef]
  16. T. Kan, K. Matsumoto, and I. Shimoyama, “Nano-pillar structure for sensitivity enhancement of spr sensor,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International,” (2009), pp. 1481–1484.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited