OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18180–18189

Time-dependent theoretical model for terahertz wave detector using a parametric process

C. Y. Jiang, J. S. Liu, B Sun, K. J. Wang, S. X. Li, and J. Q. Yao  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18180-18189 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1733 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have presented a time-dependent theoretical model to describe the time behavior of a quasi-monochromatic nanosecond terahertz detector reported by Guo et. al. (2008 Appl. Phys. Lett. 93, 021106). The temporal input-output characteristic of the detector is investigated numerically by taking the system parameters close to the experimental ones, and the calculated pulse width for the incident terahertz wave agrees well with the experimental one. Our results demonstrate that the energy and width of an output idler wave pulse are proportional to those of the incident terahertz wave pulse. This study provides a strict theoretical basis and could be used to guide the design and optimization for the highly sensitive coherent terahertz detector.

© 2010 Optical Society of America

OCIS Codes
(040.1880) Detectors : Detection
(160.3730) Materials : Lithium niobate
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(040.2235) Detectors : Far infrared or terahertz
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:

Original Manuscript: June 9, 2010
Revised Manuscript: August 2, 2010
Manuscript Accepted: August 4, 2010
Published: August 9, 2010

C. Y. Jiang, J. S. Liu, B. Sun, K. J. Wang, S. X. Li, and J. Q. Yao, "Time-dependent theoretical model for terahertz wave detector using a parametric process," Opt. Express 18, 18180-18189 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ferguson, S. H. Wang, D. Gray, D. Abbot, and X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27(15), 1312–1314 (2002). [CrossRef]
  2. A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47(7), R67–R84 (2002). [CrossRef] [PubMed]
  3. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005). [CrossRef]
  4. R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly Sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008). [CrossRef]
  5. J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, tunable optical emission from LiNbO3 without a resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969). [CrossRef]
  6. B. C. Johnson, H. E. Puthoff, J. Soohoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far infrared emission in LiNbO3,” Appl. Phys. Lett. 18(5), 181–183 (1971). [CrossRef]
  7. E. D. Palik, ‘Lithim Niobate (LiNbO3),’ in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 695–702.
  8. T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006). [CrossRef] [PubMed]
  9. C. Y. Jiang, J. S. Liu, B. Sun, K. J. Wang, and J. Q. Yao, “Steady-state theoretical model for terahertz wave detector using a parametric process,” J. Opt. 12(4), 045202 (2010). [CrossRef]
  10. R. Fischer, and L. A. Kulevskii, “Optical parametric oscillators (review),” Sov. J. Quantum Electron. 7(2), 135–159 (1977). [CrossRef]
  11. S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4(10), 598–605 (1968). [CrossRef]
  12. Y. R. Shen, “Theory of Stimulated Raman Effect. II,” Phys. Rev. 138(6A), A1741–A1746 (1965). [CrossRef]
  13. C. H. Henry, and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev. 171(3), 1058–1064 (1968). [CrossRef]
  14. C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators, and pyroelectricity,” IEEE J. Quantum Electron. 4(3), 70–84 (1968). [CrossRef]
  15. D. W. Ward, ‘Polaritonics: An intermediate regime between electronics and photonics,’ Massachusetts Institute of Technology, [Thesis], (2005) pp. 53–78.
  16. M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytic expressions for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45(9), 3996–4005 (1974). [CrossRef]
  17. M. A. Porras, “Ultrashot pulsed Gaussian light beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(1), 1086–1093 (1998). [CrossRef]
  18. R. W. Ziolkowski, and J. B. Judkins, “Propagation characteristics of ultrawide-bandwidth pulsed Gaussian beams,” J. Opt. Soc. Am. A 9(11), 2021–2030 (1992). [CrossRef]
  19. A. S. Baker, Jr., “R, Loudon, ‘Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158(2), 433–445 (1967). [CrossRef]
  20. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997). [CrossRef]
  21. T. Qiu, and M. Maier, “Long-distance propagation and damping of low-frequency phonon polaritons in LiNbO3,” Phys. Rev. B 56(10), R5717–R5720 (1997). [CrossRef]
  22. J. Shikata, K. Kawasa, and H. Ito, “The generation and linewidth control of terahertz waves by parametric processes,” Electron. Commun. Japan 86(Part 2), 52–65 (2003).
  23. W. D. Johnston, Jr., and I. P. Kaminow, “Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3,” Phys. Rev. 168(3), 1045–1054 (1968). [CrossRef]
  24. G. J. Edwards, and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984). [CrossRef]
  25. R. Guo, T. Ikari, H. Minamide, and H. Ito, “Detection of coherent tunable THz-wave using of stimulated polariton scattering in MgO:LiNbO3,” Proc. SPIE 6582, 65820Z (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited