OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18190–18199

Optical characterization of coupled resonator slow-light rib waveguides

Jeremy Goeckeritz and Steve Blair  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 18190-18199 (2010)
http://dx.doi.org/10.1364/OE.18.018190


View Full Text Article

Enhanced HTML    Acrobat PDF (1720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the design, fabrication and optical characterization of a slow light waveguide created using a linear array of coupled resonators in a large cross-section rib waveguide. Structures with as many as 25 high aspect ratio resonators are experimentally investigated. The measured propagation loss, group velocity, and delay-bandwidth product (DBP) are presented. The metric DBP/unit loss is also introduced, with a value 38/dB. Finally we discuss a method for further reducing loss in the slow-light rib waveguide.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(220.4610) Optical design and fabrication : Optical fabrication
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: June 11, 2010
Revised Manuscript: July 27, 2010
Manuscript Accepted: August 3, 2010
Published: August 9, 2010

Citation
Jeremy Goeckeritz and Steve Blair, "Optical characterization of coupled resonator slow-light rib waveguides," Opt. Express 18, 18190-18199 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18190


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Chen and S. Blair, “Nonlinearity enhancement in finite coupled-resonator slow-light waveguides,” Opt. Express 12(15), 3353–3366 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=OE-12-15-3353 . [CrossRef] [PubMed]
  2. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005). [CrossRef]
  3. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002). [CrossRef]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  5. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]
  6. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006). [CrossRef] [PubMed]
  7. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17 18340–18353 (2009). [CrossRef] [PubMed]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999). [CrossRef]
  9. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  10. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008). [CrossRef]
  11. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). [CrossRef]
  12. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005). [CrossRef] [PubMed]
  13. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008). [CrossRef] [PubMed]
  14. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007). [CrossRef] [PubMed]
  15. T. F. Krauss and R. M. De La Rue, “Optical characterization of waveguide based photonic microstructures,” Appl. Phys. Lett. 68(12), 1613–1615 (1996). [CrossRef]
  16. J. Goeckeritz and S. Blair, “One-dimensional photonic crystal rib waveguides,” J. Lightwave Technol. 25(9), 2435–2439 (2007). [CrossRef]
  17. J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The single-mode condition for silicon-on-insulator optical rib waveguides with large cross section,” J. Lightwave Technol. 22(8), 1923–1929 (2004). [CrossRef]
  18. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991). [CrossRef]
  19. C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gosele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam.Appl. 1(1), 1–13 (2003). [CrossRef]
  20. Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact 90 ° trench-based splitter for silicon-on-insulator rib waveguides,” Opt. Express 15(25), 16712–16718 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=IPNRA-2007-IMC3 . [CrossRef] [PubMed]
  21. U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8(5), 647–648 (1996). [CrossRef]
  22. S. Chakraborty, D. G. Hasko, and R. J. Mears, “Aperiodic lattices in a high refractive index contrast system for photonic bandgap engineering,” Microelectron. Eng. 73–74, 392–396 (2004). [CrossRef]
  23. A. S. Jugessur, P. Pottier, and R. M. De La Rue, “Engineering the filter response of photonic crystal microcavity filters,” Opt. Express 12(7), 1304–1312 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1304 . [CrossRef] [PubMed]
  24. S. J. Wind, P. D. Greber, and H. Rothuizen, “Accuracy and efficiency in electron beam proximity effect correction,” J. Vac. Sci. Technol. B 16(6), 3262–3268 (1998). [CrossRef]
  25. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001). [CrossRef]
  26. K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006). [CrossRef]
  27. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  28. J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett. 34(3), 359–361 (2009). [CrossRef] [PubMed]
  29. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6227 . [CrossRef] [PubMed]
  30. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-20-9444 . [CrossRef] [PubMed]
  31. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-1-219 . [CrossRef] [PubMed]
  32. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-12-9245 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited