OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18206–18216

Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering

R. Mehfuz, M. W. Maqsood, and K. J. Chau  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18206-18216 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a simple method for enhancing the efficiency of coupling from a free-space transverse-magnetic (TM) plane-wave mode into a surface-plasmon-polariton (SPP) mode. The coupling structure consists a metal film with a dielectric-filled slit and a planar, dielectric layer on the slit-exit side of the metal film. By varying the dielectric layer thickness, the wavevector of the SPP mode on the metal surface can be tuned to match the wavevector magnitude of the modes emanating from the slit exit, enabling high-efficiency radiation coupling into the SPP mode at the slit exit. An optimal dielectric layer thickness ≃ 100nm yields a visible-frequency SPP coupling efficiency ≃ 4 times greater than the SPP coupling efficiency without the dielectric layer. Commensurate coupling enhancement is observed spanning the regime 400nm ≤ λ0 ≤ 700nm. We map the dependence of the SPP coupling efficiency on the slit width, the dielectric-layer thickness, and the incident wavelength to fully characterize this SPP coupling methodology.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Optics at Surfaces

Original Manuscript: June 30, 2010
Revised Manuscript: August 3, 2010
Manuscript Accepted: August 3, 2010
Published: August 9, 2010

R. Mehfuz, M. W. Maqsood, and K. J. Chau, "Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering," Opt. Express 18, 18206-18216 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics –a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13, 1501–1505 (2001). [CrossRef]
  2. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003). [CrossRef]
  3. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005). [CrossRef] [PubMed]
  4. J. Slavik, and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007). [CrossRef]
  5. H. Raether, Surface Plasmonics on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  6. A.-L. Baudrion, F. de León-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martín-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008). [CrossRef] [PubMed]
  7. Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 6106–6121 (2004). [CrossRef] [PubMed]
  8. H. J. Lezec, and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004). [CrossRef] [PubMed]
  9. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]
  10. J. Wuenschell, and H. K. Kim, “Surface plasmon dynamics in an isolated metallic nanoslit,” Opt. Express 14, 10000–10013 (2006). [CrossRef] [PubMed]
  11. L. Aigouy, P. Lalanne, H. Liu, G. Juli, V. Mathet, and M. Mortier, “Near-field scattered by a single nanoslit in a metal film,” Appl. Opt. 46, 8573–8577 (2007). [CrossRef] [PubMed]
  12. H. W. Kim, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008). [CrossRef]
  13. B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009). [CrossRef]
  14. M. W. Kowarz, “Homogeneous and evanescent contributions in scalar near-field diffraction,” Appl. Opt. 34, 3055–3063 (1995). [CrossRef] [PubMed]
  15. E. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited