OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18254–18259

A bridge between the single-photon and squeezed-vacuum states

Nitin Jain, S. R. Huisman, Erwan Bimbard, and A. I. Lvovsky  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 18254-18259 (2010)
http://dx.doi.org/10.1364/OE.18.018254


View Full Text Article

Enhanced HTML    Acrobat PDF (1339 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The two modes of the Einstein-Podolsky-Rosen quadrature entangled state generated by parametric down-conversion interfere on a beam splitter of variable splitting ratio. Detection of a photon in one of the beam splitter output channels heralds preparation of a signal state in the other, which is characterized using homodyne tomography. By controlling the beam splitting ratio, the signal state can be chosen anywhere between the single-photon and squeezed state.

© 2010 Optical Society of America

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: June 4, 2010
Revised Manuscript: July 2, 2010
Manuscript Accepted: July 5, 2010
Published: August 10, 2010

Citation
Nitin Jain, S. R. Huisman, Erwan Bimbard, and A. I. Lvovsky, "A bridge between the single-photon and squeezed-vacuum states," Opt. Express 18, 18254-18259 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18254


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Quantum Information with Continuous Variables of Atoms and Light, N. Cerf, G. Leuchs, and E. Polzik (Eds.), World Scientific, Singapore, 2007.
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  3. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001). [CrossRef] [PubMed]
  4. A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon Fock state by highfrequency homodyne detection,” Phys. Rev. A 70, 053821 (2004). [CrossRef]
  5. S. R. Huisman, N. Jain, S. A. Babichev, F. Vewinger, A. N. Zhang, S. H. Youn, and A. I. Lvovsky, “Instant singlephoton Fock state tomography,” Opt. Lett. 34, 2739–2741 (2009). [CrossRef] [PubMed]
  6. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light,” Science 306, 660–662 (2004). [CrossRef] [PubMed]
  7. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrdinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006). [CrossRef] [PubMed]
  8. G. Puentes, J. S. Lundeen, M. P. A. Branderhorst, H. B. Coldenstrodt-Ronge, B. J. Smith, and I. A. Walmsley, “Bridging Particle andWave Sensitivity in a Configurable Detector of Positive Operator-Valued Measures,” Phys. Rev. Lett. 102, 080404 (2009). [CrossRef] [PubMed]
  9. E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010). [CrossRef]
  10. H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Entanglement distillation from Gaussian input states,” Nat. Photonics 4, 178–181 (2010). [CrossRef]
  11. U. Leonhardt, Measuring the quantum state of light (Cambridge University Press, Cambridge, 1997)
  12. A. I. Lvovsky, and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009). [CrossRef]
  13. T. Aichele, A. I. Lvovsky, and S. Schiller, “Optical mode characterization of single photons prepared via conditional measurements on a biphoton state,” Eur. Phys. J. D 18, 237–245 (2002). [CrossRef]
  14. A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” J. Opt. B: Quantum Semiclassical Opt. 6, S556–S559 (2004). [CrossRef]
  15. J. Řeháček, Z. Hradil, E. Knill and A. I. Lvovsky, “Diluted maximum-likelihood algorithm for quantum tomography,” Phys. Rev. A 75, 042108 (2007). [CrossRef]
  16. J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007). [CrossRef]
  17. W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C. Radzewicz, “Pulsed squeezed light: simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006). [CrossRef]
  18. A. I. Lvovsky, W. Wasilewski, and K. Banaszek, “Decomposing a pulsed optical parametric amplifier into independent squeezers,” J. Mod. Opt. 54, 721–733 (2007). [CrossRef]
  19. Y. Bar-Shalom, and X.-R. Li, Estimation with Applications to Tracking and Navigation (John Wiley & Sons, New York, 2001) [CrossRef]
  20. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited