OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18260–18268

Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field

M. Nakajima, A. Namai, S. Ohkoshi, and T. Suemoto  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 18260-18268 (2010)
http://dx.doi.org/10.1364/OE.18.018260


View Full Text Article

Enhanced HTML    Acrobat PDF (975 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first observation of sub-terahertz bulk-magnetization precession, using terahertz time-domain spectroscopy. The magnetization precession in gallium-substituted ε-iron oxide nano-ferromagnets under zero magnetic field is induced by the impulsive magnetic field of the THz wave through the gyromagnetic effect. Just at the resonance frequency, the linear to circular polarized wave conversion is realized. This is understood as the free induction decay signal radiated from a rotating magnetic dipole corresponding to the natural resonance. Furthermore, this demonstration reveals that the series of gallium-substituted ε-iron oxide nano-ferromagnets is very prospective for magneto-optic devices, which work at room temperature without external magnetic field, in next-generation wireless communication.

© 2010 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect
(260.3090) Physical optics : Infrared, far
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 9, 2010
Revised Manuscript: August 4, 2010
Manuscript Accepted: August 4, 2010
Published: August 10, 2010

Citation
M. Nakajima, A. Namai, S. Ohkoshi, and T. Suemoto, "Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field," Opt. Express 18, 18260-18268 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18260


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fujishima, “Recent trends and future prospective on millimeter-wave CMOS circuits,” IEICE Electron. Express 6(11), 721–735 (2009). [CrossRef]
  2. A. Vilcot, B. Cabon, and J. Chazelas, “Microwave Photonics” (Kluwer: Boston, 1996).
  3. R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009). [CrossRef]
  4. T. X. Kraemer, M. Rudolph, F. J. Schmueckle, J. Wuerfl, and G. Traenkle, “InP DHBT Process in Transferred-Technology With ft and fmax Over,” IEEE Trans. Electron. Dev. 56, 1897 (2009). [CrossRef]
  5. M. J. W. Rodwell, “High Speed Integrated Circuit Technology, towards 100 GHz Logic” (World Scientific, Singapore, 2001).
  6. V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009). [CrossRef]
  7. Y. Naito and K. Suetake, “Application of Ferrite to Electromagnetic Wave Absorber and its Characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971). [CrossRef]
  8. J. L. Snoek, “Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s,” Physica 14(4), 207–217 (1948). [CrossRef]
  9. F. Wang, K. Ishii, and B. Y. Tsui, “Ferrimagnetic resonance of single-crystal Barium Ferrite in the Millimeter Wave Region,” J. Appl. Phys. 32(8), 1621–1622 (1961). [CrossRef]
  10. Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, “Low-loss barium ferrite quasi-single-crystals for microwave application,” J. Appl. Phys. 101, 501 (2007).
  11. Committee on identification of research needs relating to potential biological or adverse health effects of wireless communications devices, National Research Council. Identification of Research Needs Relating to Potential Biological or Adverse Health Effects of Wireless Communication (National Academies Press, WA, 2008).
  12. S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. A. Sasaki, “Millimeter-Wave Absorber Based on Gallium-Substituted-Iron Oxide Nanomagnets,” Angew. Chem. Int. Ed. 46(44), 8392–8395 (2007). [CrossRef]
  13. A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009). [CrossRef] [PubMed]
  14. J. Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72(2), 020401 (2005). [CrossRef]
  15. M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009). [CrossRef] [PubMed]
  16. E. Tronc, C. Chanéac, and J. P. Jolivet, “Structure and magnetic characteristic of epsilon-Fe2O3,” J. Solid State Chem. 139(1), 93–104 (1998). [CrossRef]
  17. J. Jin, S. Ohkoshi, and K. Hashimoto, “Giant Coercive Field of Nanometer- Sized Iron Oxide,” Adv. Mater. 16(1), 48–51 (2004). [CrossRef]
  18. A. Namai, S. Sakurai, and S. Ohkoshi, “Synthesis, crystal structure, and magnetic properties of ε-GaIIIxFeIII2-xO3 nanorods,” J. Appl. Phys. 105(7), 516 (2009). [CrossRef]
  19. A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010). [CrossRef]
  20. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  21. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef]
  22. R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199–201 (2002). [CrossRef]
  23. O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006). [CrossRef]
  24. A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and Th. Rasing, “Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.,” Nature 429(6994), 850–853 (2004). [CrossRef] [PubMed]
  25. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005). [CrossRef] [PubMed]
  26. S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, “Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells,” Phys. Rev. Lett. 77(13), 2814–2817 (1996). [CrossRef] [PubMed]
  27. H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature 457(7230), 702–705 (2009). [CrossRef] [PubMed]
  28. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007). [CrossRef] [PubMed]
  29. S. Chikazumi, “Physics of Ferromagnetism” (Oxford University Press, New York, 1997).
  30. M. Born, and E. Wolf, “The principle of optics” (Pergamon Press, 1959).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited