OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18312–18323

Optimization of metallic microheaters for high-speed reconfigurable silicon photonics

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18312-18323 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1695 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The strong thermooptic effect in silicon enables low-power and low-loss reconfiguration of large-scale silicon photonics. Thermal reconfiguration through the integration of metallic microheaters has been one of the more widely used reconfiguration techniques in silicon photonics. In this paper, structural and material optimizations are carried out through heat transport modeling to improve the reconfiguration speed of such devices, and the results are experimentally verified. Around 4 µs reconfiguration time are shown for the optimized structures. Moreover, sub-microsecond reconfiguration time is experimentally demonstrated through the pulsed excitation of the microheaters. The limitation of this pulsed excitation scheme is also discussed through an accurate system-level model developed for the microheater response.

© 2010 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.6840) Materials : Thermo-optical materials

ToC Category:
Integrated Optics

Original Manuscript: June 30, 2010
Revised Manuscript: August 9, 2010
Manuscript Accepted: August 9, 2010
Published: August 11, 2010

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, "Optimization of metallic microheaters for high-speed reconfigurable silicon photonics," Opt. Express 18, 18312-18323 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Reed, and A. Knights, Silicon Photonics: an introduction (Wiley, 2004). [CrossRef]
  2. L. Pavesi, and D. Lockwood, Silicon photonics (Springer Verlag, 2004).
  3. R. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006). [CrossRef]
  4. H. Lira, S. Manipatruni, and M. Lipson, "Broadband hitless silicon electro-optic switch for on-chip optical networks," Opt. Express 17, 22271-22280 (2009). [CrossRef]
  5. C. Li, L. Zhou, and A. Poon, "Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling," Opt. Express 15, 5069-5076 (2007). [CrossRef] [PubMed]
  6. J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, and W. Krug, "A Hybrid Electrooptic Microring Resonator-Based 1×4×1 ROADM for Wafer Scale Optical Interconnects," J. Lightwave Technol. 27, 440-448 (2009). [CrossRef]
  7. M. S. Rasras, D. M. Gill, S. S. Patel, K.-Y. Tu, Y.-K. Chen, A. E. White, A. T. S. Pomerene, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, "Demonstration of a fourth-order pole-zero optical filter integrated using CMOS processes," J. Lightwave Technol. 25, 87-92 (2007). [CrossRef]
  8. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, "Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide," Opt. Express 17, 5502-5516 (2009). [CrossRef] [PubMed]
  9. E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators," IEEE Photon. Technol. Lett. 17, 2358-2360 (2005). [CrossRef]
  10. R. Jones, J. Doylend, P. Ebrahimi, S. Ayotte, O. Raday, and O. Cohen, "Silicon photonic tunable optical dispersion compensator," Opt. Express 15, 15836-15841 (2007). [CrossRef] [PubMed]
  11. F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. Offrein, and G. Bona, "Compact tunable FIR dispersion compensator in SiON technology," IEEE Photon. Technol. Lett.  15, 1570-1572 (2003). [CrossRef]
  12. X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, "Compact thermally tunable silicon wavelength switch: Modeling and characterization," IEEE Photon. Technol. Lett. 20, 936-938 (2008). [CrossRef]
  13. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1x4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate," IEEE Photon. Technol. Lett. 19, 704-706 (2007). [CrossRef]
  14. I. Kiyat, A. Aydinli, and N. Dagli, "Low-power thermooptical tuning of SOI resonator switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006). [CrossRef]
  15. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express 13, 10109-10114 (2005). [CrossRef] [PubMed]
  16. D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for gigabit filtering in access networks," IEEE Photon. Technol. Lett. 17, 336-338 (2005). [CrossRef]
  17. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, "Low loss and high extinction ratio strictly nonblocking 16 x 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology," J. Lightwave Technol. 19, 371-379 (2001). [CrossRef]
  18. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-mu s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch," IEEE Photon. Technol. Lett. 16, 2039-2041 (2004). [CrossRef]
  19. A. Bilotti, "Static temperature distribution in IC chips with isothermal heat sources," IEEE Trans. Electron. Dev. 21, 217-226 (1974). [CrossRef]
  20. F. Yu, M. Cheng, P. Habitz, and G. Ahmadi, "Modeling of thermal behavior in SOI structures," IEEE Trans. Electron. Dev. 51, 83-91 (2004). [CrossRef]
  21. M. Pruessner, T. Stievater, M. Ferraro, and W. Rabinovich, "Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities," Opt. Express 15, 7557-7563 (2007). [CrossRef] [PubMed]
  22. F. Kreith, and M. Bohn, Principles of heat transfer (Harper & Row New York, 1986).
  23. Y. Ju, and K. Goodson, "Process-dependent thermal transport properties of silicon-dioxide films deposited using low-pressure chemical vapor deposition," Appl. Phys. (Berl.) 85, 7130 (1999). [CrossRef]
  24. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, "Precision Tunable Silicon Compatible Microring Filters," IEEE Photon. Technol. Lett. 20, 1739-1741 (2008). [CrossRef]
  25. X. Zhang, and C. Grigoropoulos, "Thermal conductivity and diffusivity of free-standing silicon nitride thin films," Rev. Sci. Instrum. 66, 1115 (1995). [CrossRef]
  26. M. Geis, S. Spector, R. Williamson, and T. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004). [CrossRef]
  27. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, "Novel micro-heater structure for low-power and fast photonic reconfiguration," in "Conference on Lasers and Electro-Optics," (Optical Society of America, 2010), p. CWP6.
  28. M. A. Popovic, "Theory and design of high-index-contrast microphotonic circuits," Ph.D. thesis, Massachusetts Institute of Technology (2008).
  29. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, "Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms," Opt. Express 14, 2413-2422 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited