OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18360–18367

High displacement sensitivity in asymmetric plasmonic nanostructures

Hsuan-Chi Tseng and Chih-Wei Chang  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18360-18367 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (928 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The strong couplings between two asymmetric plasmonic nanostructures can lead to ultra-sensitive optical responses when their separation changes. We employ electromagnetic numerical simulations to study the displacement sensitivity of two kinds of plasmonic systems: (1) a split-ring resonator and a metal rod; (2) two metal rods of asymmetric lengths. Structural asymmetry makes antiparallel current interactions possible and greatly enhances the sensitivity to 5%/nm for normalized frequency changes and 29%/nm for normalized transmittance changes. These are the highest displacement sensitivity among all physical systems investigated so far. In addition, we also find that these systems display a universal scaling curve independent of their shapes or dimensions. These asymmetric plasmonic nanostructures will open widespread applications from strain mapping, surface wave or heat wave imaging, optomechanical sensing, to environmental detections.

© 2010 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: July 21, 2010
Revised Manuscript: July 28, 2010
Manuscript Accepted: August 1, 2010
Published: August 12, 2010

Hsuan-Chi Tseng and Chih-Wei Chang, "High displacement sensitivity in asymmetric plasmonic nanostructures," Opt. Express 18, 18360-18367 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  3. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003). [CrossRef]
  4. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4(10), 1853–1857 (2004). [CrossRef]
  5. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009). [CrossRef] [PubMed]
  6. K. Zhang, Y. J. Xiang, X. C. Wu, L. L. Feng, W. W. He, J. B. Liu, W. Y. Zhou, and S. S. Xie, “Enhanced optical responses of Au@Pd core/shell nanobars,” Langmuir 25(2), 1162–1168 (2009). [CrossRef]
  7. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005). [CrossRef] [PubMed]
  8. G. L. Liu, Y. D. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1(1), 47–52 (2006). [CrossRef]
  9. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003). [CrossRef]
  10. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles,” Nano Lett. 5(11), 2246–2252 (2005). [CrossRef] [PubMed]
  11. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006). [CrossRef] [PubMed]
  12. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15(26), 17736–17746 (2007). [CrossRef] [PubMed]
  13. P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008). [CrossRef]
  14. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009). [CrossRef] [PubMed]
  15. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010). [CrossRef]
  16. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  17. P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007). [CrossRef]
  18. F. J. García de Abajo, “Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008). [CrossRef]
  19. P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007). [CrossRef] [PubMed]
  20. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009). [CrossRef]
  21. T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009). [CrossRef]
  22. Due to the asymmetric structures, the choice of D is a little arbitrary here. But the universal curve does not change much even if we choose D = Lrod for the SRR-rod systems or D = Llong for the asymmetric-rod system.
  23. P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: Physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111(47), 17451–17454 (2007). [CrossRef]
  24. Even if we restrict s/D > 0.1 to exclude any numerical errors arising from possible nonlocal effects, we obtain A = 0.238 and τ = 0.065, which is still much more sensitive than previous results.
  25. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008). [CrossRef]
  26. Here for the SRR-rod system, the frequency change is normalized to the second resonance frequency of an individual SRR and the separation is normalized to Lrod. For the asymmetric-rod systems, the frequency change is normalized to the resonance frequency of the short, isolated metal rod and the separation is normalized to Llong. Again, due to the structural asymmetry, the choices of normalization parameters are a little arbitrary. But we have found that different combinations give similar results.
  27. T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Structural-configurated magnetic plasmon bands in connected ring chains,” Opt. Express 17(14), 11486–11494 (2009). [CrossRef] [PubMed]
  28. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006). [CrossRef]
  29. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited