OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18374–18382

One-dimensional hard x-ray field retrieval using a moveable structure

Manuel Guizar-Sicairos, Kenneth Evans-Lutterodt, Abdel F. Isakovic, Aaron Stein, John B. Warren, Alec R. Sandy, Suresh Narayanan, and James R. Fienup  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 18374-18382 (2010)
http://dx.doi.org/10.1364/OE.18.018374


View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a technique that allows measuring the field of an x-ray line focus using far-field intensity measurements only. One-dimensional phase retrieval with transverse translation diversity is used to recover a hard x-ray beam focused by a compound kinoform lens. The reconstruction is found to be in good agreement with independent knife-edge scan measurements taken at separated planes. The approach avoids the need for measuring the beam profile at focus and allows narrower beams to be measured than the traditional knife-edge scan.

© 2010 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(110.7440) Imaging systems : X-ray imaging
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Image Processing

History
Original Manuscript: March 23, 2010
Revised Manuscript: June 22, 2010
Manuscript Accepted: July 24, 2010
Published: August 12, 2010

Citation
Manuel Guizar-Sicairos, Kenneth Evans-Lutterodt, Abdel F. Isakovic, Aaron Stein, John B. Warren, Alec R. Sandy, Suresh Narayanan, and James R. Fienup, "One-dimensional hard x-ray field retrieval using a moveable structure," Opt. Express 18, 18374-18382 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18374


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-X-ray focusing,” Nat. Phys. 6, 122–125 (2010). [CrossRef]
  2. H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006). [CrossRef] [PubMed]
  3. K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99, 134801 (2007). [CrossRef] [PubMed]
  4. H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008). [CrossRef]
  5. A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol. B 26, 122–127 (2008). [CrossRef]
  6. T. Kimura, S. Handa, H. Mimura, H. Yumoto, D. Yamakawa, S. Matsuyama, K. Inagaki, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Wavefront Control System for Phase Compensation in Hard X-ray Optics,” Jpn. J. Appl. Phys. 48, 072503 (2009). [CrossRef]
  7. H. Mimura, H. Yumoto, S. Matsuyama, S. Handa, T. Kimura, Y. Sano, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, “Direct determination of the wave field of an x-ray nanobeam,” Phys. Rev. A 77, 015812 (2008). [CrossRef]
  8. H. M. Quiney, A. G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, “Diffractive imaging of highly focused x-ray fields,” Nat. Phys. 2, 101–104 (2006). [CrossRef]
  9. M. Guizar-Sicairos, and J. R. Fienup, “Measurement of coherent x-ray focused beams by phase retrieval with transverse translation diversity,” Opt. Express 17, 2670–2685 (2009). [CrossRef] [PubMed]
  10. H. M. L. Faulkner, and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004). [CrossRef] [PubMed]
  11. M. Guizar-Sicairos, and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264–7278 (2008). [CrossRef] [PubMed]
  12. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008). [CrossRef] [PubMed]
  13. A. M. Maiden, and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009). [CrossRef] [PubMed]
  14. G. R. Brady, M. Guizar-Sicairos, and J. R. Fienup, “Optical wavefront measurement using phase retrieval with transverse translation diversity,” Opt. Express 17, 624–639 (2009). [CrossRef] [PubMed]
  15. A. F. Isakovic, K. Evans-Lutterodt, D. Elliott, A. Stein, and J. B. Warren, “Cyclic, cryogenic, highly anisotropic plasma etching of silicon using SF6/O2,” J. Vac. Sci. Technol. A 26, 1182–1187 (2008). [CrossRef]
  16. See for example, [T. R. Crimmins, and J. R. Fienup, “Ambiguity of phase retrieval for functions with disconected support,” J. Opt. Soc. Am. 71, 1026–1028 (1981) (], and references within.). [CrossRef]
  17. B. C. McCallum, and J. M. Rodenburg, “Two-dimensional demonstration of Wigner phase-retrieval microscopy in the STEM configuration,” Ultramicroscopy 45, 371–380 (1992). [CrossRef]
  18. S. H. Nawab, T. F. Quatieri, and J. S. Lim, “Signal reconstruction from short-time Fourier transform magnitude,” IEEE Trans. Acoust. Speech Signal Process. 31, 986–998 (1983). [CrossRef]
  19. O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108, 481–487 (2008). [CrossRef]
  20. C. M. Kewish, P. Thibault, M. Dierolf, O. Bunk, A. Menzel, J. Vila-Comamala, K. Jefimovs, and F. Pfeiffer, “Ptychographic characterization of the wavefield in the focus of reflective hard X-ray optics,” Ultramicroscopy 110, 325–329 (2010). [CrossRef] [PubMed]
  21. A. Schropp, P. Boye, J. M. Feldkamp, R. Hoppe, J. Patommel, D. Samberg, S. Stephan, K. Giewekemeyer, R. N. Wilke, T. Salditt, J. Gulden, A. P. Mancuso, I. A. Vartanyants, E. Weckert, S. Schöder, M. Burghammer, and C. G. Schroer, “Hard x-ray nanobeam characterization by coherent diffraction microscopy,” Appl. Phys. Lett. 96, 091102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited