OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18383–18393

Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography

Cheng Hung Chu, Chiun Da Shiue, Hsuen Wei Cheng, Ming Lun Tseng, Hai-Pang Chiang, Masud Mansuripur, and Din Ping Tsai  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18383-18393 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1781 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Amorphous thin films of Ge2Sb2Te5, sputter-deposited on a ZnS-SiO2 dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge2Sb2Te5 thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography.

© 2010 OSA

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Optical Data Storage

Original Manuscript: May 6, 2010
Revised Manuscript: June 19, 2010
Manuscript Accepted: August 4, 2010
Published: August 12, 2010

Cheng Hung Chu, Chiun Da Shiue, Hsuen Wei Cheng, Ming Lun Tseng, Hai-Pang Chiang, Masud Mansuripur, and Din Ping Tsai, "Laser-induced phase transitions of Ge2Sb2Te5 thin
films used in optical and electronic data storage
and in thermal lithography," Opt. Express 18, 18383-18393 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991). [CrossRef]
  2. J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995). [CrossRef]
  3. T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000). [CrossRef]
  4. K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003). [CrossRef]
  5. A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004). [CrossRef]
  6. W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008). [CrossRef]
  7. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004). [CrossRef]
  8. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006). [CrossRef]
  9. C. P. Liu, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp. 488(1), 190–194 (2009). [CrossRef]
  10. T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998). [CrossRef]
  11. G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007). [CrossRef] [PubMed]
  12. T. Kato and K. Tanaka, “Electronic properties of amorphous and crystalline Ge2Sb2Te5 films,” Jpn. J. Appl. Phys. 44(10), 7340–7344 (2005). [CrossRef]
  13. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006). [CrossRef] [PubMed]
  14. M. M. Aziz and C. D. Wright, “An analytical model for nanoscale electrothermal probe recording on phase-change media,” J. Appl. Phys. 99(3), 12 (2006). [CrossRef]
  15. K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007). [CrossRef]
  16. H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001). [CrossRef]
  17. T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).
  18. H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006). [CrossRef] [PubMed]
  19. D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, “Threshold field of phase change memory materials measured using phase change bridge devices,” Appl. Phys. Lett. 95(8), 3 (2009). [CrossRef]
  20. E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007). [CrossRef]
  21. C. P. Liu, Y. X. Huang, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser,” IEEE Trans. Magn. 45(5), 2206–2208 (2009). [CrossRef]
  22. N. Yamada and T. Matsunaga, “Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory,” J. Appl. Phys. 88(12), 7020–7028 (2000). [CrossRef]
  23. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001). [CrossRef]
  24. C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009). [CrossRef]
  25. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998). [CrossRef]
  26. T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001). [CrossRef]
  27. J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003). [CrossRef]
  28. W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003). [CrossRef]
  29. J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jpn. J. Appl. Phys. 45(No. 2B), 1383–1384 (2006). [CrossRef]
  30. T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008). [CrossRef] [PubMed]
  31. K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008). [CrossRef] [PubMed]
  32. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys. 86(10), 5879–5887 (1999). [CrossRef]
  33. J. S. Wei, X. B. Jiao, F. X. Gan, and M. F. Xiao, “Laser pulse induced bumps in chalcogenide phase change films,” J. Appl. Phys. 103(12), 5 (2008). [CrossRef]
  34. S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006). [CrossRef]
  35. L. Y. Wang, B. Liu, Z. T. Song, S. L. Feng, Y. H. Xiang, and F. X. Zhang, “Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material,” J. Electrochem. Soc. 157(4), H470–H473 (2010). [CrossRef]
  36. S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007). [CrossRef]
  37. D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A-Vac, Surf. Films 15(3), 1442–1445 (1997). [CrossRef]
  38. S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited