OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18394–18400

Biochemical sensing with a polymer-based micromachined Fabry-Perot sensor

Tianhua Zhang, Shantan Talla, Zhongcheng Gong, Sukrut Karandikar, Rebecca Giorno, and Long Que  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 18394-18400 (2010)
http://dx.doi.org/10.1364/OE.18.018394


View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A white-light source operated polymer-based micromachined Fabry-Perot biochemical sensor is reported. As a refractive-index sensitive optical sensor, its transducing signal varies upon the changes of the effective refractive index in the Fabry-Perot cavity. This sensor is fabricated from PDMS and glass. More specifically, this sensor is a micromachined Fabry-Perot interferometer (µFPI) and is fabricated by bonding a glass substrate and the soft-lithographically patterned PDMS. Several biochemicals have been detected with the µFPI biochemical sensors. Measurements show that rabbit IgG at a concentration of as low as 5 to 50 ng/ml can be detected even without any performance optimization of the devices.

© 2010 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(130.6010) Integrated optics : Sensors
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Sensors

History
Original Manuscript: May 18, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: August 2, 2010
Published: August 12, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Tianhua Zhang, Shantan Talla, Zhongcheng Gong, Sukrut Karandikar, Rebecca Giorno, and Long Que, "Biochemical sensing with a polymer-based micromachined Fabry-Perot sensor," Opt. Express 18, 18394-18400 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988). [CrossRef] [PubMed]
  2. C. H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, ““Fabrication of micro-grating structures by direct laser writing based on two photon process and their liquid crystal alignment abilities,” IEICE Transactions on Electronics,” E 91-C(10), 1581–1586 (2008).
  3. L. Hornbeck, “Deformable-mirror spatial light modulators,” Proc. SPIE, Spatial Light Modulators and Applications III, v.1150, 86–102 (1990)
  4. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007). [CrossRef] [PubMed]
  5. C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994). [CrossRef]
  6. N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002). [CrossRef]
  7. J. Han, “Fabry-Perot cavity chemical sensors by silicon micromachining techniques,” Appl. Phys. Lett. 74(3), 445–447 (1999). [CrossRef]
  8. L. Que, “Two-dimensional tunable filter array for a matrix of integrated fiber optic input-output light channels”, US Patent 6,449,410 (2002)
  9. M. Blomberg, O. Rusanen, and K. Keranen, “A silicon microsystem-miniaturized infrared spectrometer,” Proc. 9th Int. Conf. On Solid-state Sensors, Actuators and Microsystems, 1257–1258 (1997)
  10. N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proceedings of the SPIE, v. 6466, 646606–12 (2007)
  11. L. Que, A. Zribi, A. Banerjee, and D. Hays, “Raman system on a chip,” US Patent 7,505,128 (2009)
  12. T. Dohi, K. Matsumoto, and I. Shimoyama, “The optical blood test device with the micro Fabry-Perot interferometer”, Proceedings of IEEE MEMS, 403–406 (2004)
  13. T. Dohi, K. Matsumoto, and I. Shimoyama, “The micro Fabry-Perot interferometer for the spectral endoscope”, Proceedings of IEEE MEMS, 830–833 (2005)
  14. K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007). [CrossRef] [PubMed]
  15. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005). [CrossRef] [PubMed]
  16. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express 17(4), 2731–2738 (2009). [CrossRef] [PubMed]
  17. M. Born, and E. Wolf, Principal of Optics (John Wiley & Sons, Inc., 2000)
  18. S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurement by white-light Faby-Perot interferometry,” Opt. Eng. 46(3), 034402 (2007). [CrossRef]
  19. T. Zhang, Z. Gong, and L. Que, “A white-light source operated polymer-based micromachined Fabry-Perot chemo/biosensor,” Proc. of IEEE Intl. Conf. on NEMS, 177–180 (2009)
  20. S. Zangooi, R. Bjorklund, and H. Arwin, “Protein adsorption in thermally oxidized porous silicon layers,” Thin Solid Films 313–314(1-2), 825–830 (1998). [CrossRef]
  21. T. Zhang, Z. Gong, R. Giorno, and L. Que, “Signal sensitivity and intensity enhancement for a polymer-based Fabry-Perot interferometer with embedded nanostructures in its cavity,” Proceeding of 15th International Conference on Solid-State Sensors, Actuators & Microsystems (Transducers'09), 2310–2313 (2009)
  22. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited