OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18407–18418

Non-Markovian dynamics of a microcavity coupled to a waveguide in photonic crystals

Meng-Hsiu Wu, Chan U. Lei, Wei-Min Zhang, and Heng-Na Xiong  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 18407-18418 (2010)
http://dx.doi.org/10.1364/OE.18.018407


View Full Text Article

Enhanced HTML    Acrobat PDF (1306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the non-Markovian dynamics of a microcavity coupled to a waveguide in photonic crystals is studied based on a semi-finite tight binding model. Using the exact master equation, we solve analytically and numerically the general and exact solution of the non-Markovain dynamics for the cavity coupled to the waveguide in different coupling regime. A critical transition is revealed when the coupling increases between the cavity and the waveguide. In particular, the cavity field becomes dissipationless when the coupling strength goes beyond a critical value, as a manifestation of strong non-Markovian memory effect. The result also indicates that the cavity can maintain in a coherent state with arbitrary small number of photons when it strongly couples to the waveguide at very low temperature. These properties can be measured experimentally through the photon current flowing over the waveguide in photonic crystals.

© 2010 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: June 2, 2010
Revised Manuscript: June 22, 2010
Manuscript Accepted: July 14, 2010
Published: August 12, 2010

Citation
Wei-Min Zhang, Meng-Hsiu Wu, Chan U Lei, and Heng-Na Xiong, "Non-Markovian dynamics of a microcavity coupled to a waveguide in photonic crystals," Opt. Express 18, 18407-18418 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18407


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003). [CrossRef] [PubMed]
  2. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084 (2008). [CrossRef] [PubMed]
  3. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449 (2007). [CrossRef]
  4. P. Yao, and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80, 165128 (2009). [CrossRef]
  5. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled singlequantum-dot V nanocavity system,” Nat. Phys. 6, 279 (2010). [CrossRef]
  6. F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovich, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 gm using cavityconfined slow light,” Opt. Express 17, 5439 (2009). [CrossRef] [PubMed]
  7. M. Loncar, and A. Scherer, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648 (2003). [CrossRef]
  8. M. Skorobogatiy, and A. V. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518 (2006). [CrossRef]
  9. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99 (2010). [CrossRef]
  10. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465 (2008). [CrossRef]
  11. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  12. H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622 (2008). [CrossRef]
  13. Y. Liu, Z. Wang, M. Han, S. Fan, and R. Dutton, “Mode-locking of monolithic laser diodes incorporating coupled-resonator optical waveguides,” Opt. Express 13, 4539 (2005). [CrossRef] [PubMed]
  14. P. Lambropoulos, G. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455 (2000). [CrossRef]
  15. S. John, and J. Wang, “Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418 (1990). [CrossRef] [PubMed]
  16. S. John, and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764 (1994). [CrossRef] [PubMed]
  17. S. Kilin, and D. Mogilevtsev, “Freezing” of decay of a quantum system with a dip in a spectrum of the heat bath-coupling constants,” Laser Phys. 2, 153 (1992).
  18. A. G. Kofman, G. Kurizki, and B. Sherman, “Spontaneous and Induced Atomic Decay in Photonic Band Structures,” J. Mod. Opt. 41, 353 (1994). [CrossRef]
  19. D. Mogilevtsev, F. Moreira, S. B. Cavalcanti, and S. Kilin, “Field-emitter bound states in structured thermal reservoirs,” Phys. Rev. A 75, 043802 (2007). [CrossRef]
  20. S. Longhi, “Non-Markovian decay and lasing condition in an optical microcavity coupled to a structured reservoir,” Phys. Rev. A 74, 063826 (2006). [CrossRef]
  21. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711 (1999). [CrossRef]
  22. J. K. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665 (2004). [CrossRef]
  23. U. Fano, “Effects of Configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866 (1961). [CrossRef]
  24. S. Longhi, “Spectral singularities in a non-Hermitian Friedrichs-Fano-Anderson model,” Phys. Rev. B 80, 165125 (2009). [CrossRef]
  25. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system,” Rev. Mod. Phys. 59, 1 (1987). [CrossRef]
  26. R. P. Feynman, and F. L. Vernon, “The theory of a general quantum system interacting with a linear dissipative system,” Ann. Phys. 24, 118 (1963). [CrossRef]
  27. W. M. Zhang, D. H. Feng, and R. Gilmore, “Coherent states: theory and some applications,” Rev. Mod. Phys. 62, 867 (1990). [CrossRef]
  28. M. W. Y. Tu, and W. M. Zhang, “Non-Markovian decoherence theory for a double-dot charge qubit,” Phys. Rev. B 78, 235311 (2008). [CrossRef]
  29. M. W. Y. Tu, M. T. Lee, and W. M. Zhang, “Exact master equation and non-markovian decoherence for quantum dot quantum computing,” Quantum Inf. Process. 8, 631 (2009). [CrossRef]
  30. J. H. Au, and W. M. Zhang, “Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels,” Phys. Rev. A 76, 042127 (2007). [CrossRef]
  31. . J. H. Au, M. Feng and W. M. Zhang, “Non-Markovian decoherence dynamics of entangled coherent states,” Quantum. Inf. Comput. 9, 0317 (2009).
  32. L. P. Kadanoff, and G. Baym, Quantum Statistical Mechanics, (Benjamin, New York, 1962).
  33. J. S. Jin, M. W. Y. Tu, W. M. Zhang, and Y. J. Yan, “A nonequilibrium theory for transient transport dynamics in nanostructures via the Feynman-Vernon influence functional approach,” arXiv:0910.1675 (to appear in N. J. Phys., 2010).
  34. H. N. Xiong, W. M. Zhang, X. G. Wang, and M. H. Wu, “Exact non-Markovian cavity dynamics strongly coupled to a reservoir,” arXiv:1005.0904 (to appear in Phys. Rev. A, 2010).
  35. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-Binding Description of the coupled defect modes in threedimensional photonic crystals,” Phys. Rev. Lett. 84, 2140 (2000). [CrossRef] [PubMed]
  36. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007). [CrossRef]
  37. S. Hughes, and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70, 195313 (2004). [CrossRef]
  38. D. Mogilevtsev, S. Kilin, F. Moreira, and S. B. Cavalcanti, “Markovian and non-Markovian decay in pseudogaps,” Photon Nanostruct. Fundam. Appl. 5, 1 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited