OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18431–18437

Mathematic models for a ray tracing method and its applications in wireless optical communications

Minglun Zhang, Yangan Zhang, Xueguang Yuan, and Jinnan Zhang  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18431-18437 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (860 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.

© 2010 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 11, 2010
Revised Manuscript: August 1, 2010
Manuscript Accepted: August 2, 2010
Published: August 12, 2010

Minglun Zhang, Yangan Zhang, Xueguang Yuan, and Jinnan Zhang, "Mathematic models for a ray tracing method and its applications in wireless optical communications," Opt. Express 18, 18431-18437 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Wikipedia. “Ray_tracing_(physics)”. http://en.wikipedia.org/wiki/Ray_tracing_(physics) .
  2. F. J. López-Hernández, R. Pérez-Jiménez, and A. Santamaría, “Ray tracing algorithms for fast calculation of the channel impulse response on diffuse IR-wireless indoor channels,” Opt. Eng. 39(10), 1510–1512 (2000). [CrossRef]
  3. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Comm. 11(3), 367–379 (1993). [CrossRef]
  4. O. González, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Error Analysis of the Simulated Impulse Response on Indoor Wireless Optical Channels Using a Monte Carlo-Based Ray-Tracing Algorithm,” IEEE Trans. Commun. 53(1), 124–130 (2005). [CrossRef]
  5. S. Rodríguez, R. Pérez-Jiménez, F. J. López-Hernández, O. González, and A. Ayala, “Reflection model for calculation of the impulse response on IR-wireless indoor channels using ray-tracing algorithm,” Microw. Opt. Technol. Lett. 32(4), 296–300 (2002). [CrossRef]
  6. D. Takase, and T. Ohtsuki, “Optical wireless MIMO communications (OMIMO),” in Proceedings of IEEE Grobal Telecommunications Conference (Institute of Electrical and Electronics Engineers, Dallas, 2004), pp. 928–932.
  7. D. Takase and T. Ohtsuki, “Spatial multiplexing in optical wireless MIMO communications over indoor environment,” IEICE Trans. E 89-B(4), 1364–1371 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited