OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18471–18482

Ultrafast temporal pulse shaping via phase-sensitive three-wave mixing

Y. C. Yin, D. French, and I. Jovanovic  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18471-18482 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is well-known that the process of optical parametric amplification (OPA) can be sensitive to the phases of the incident waves. In OPA realized by three-wave mixing, injection of all three waves into the same mode with appropriate phase relationship results in amplification of the signal phase, with an associated deamplification of the signal energy. Prospects for the use of this technique in the temporal domain for shaping ultrashort laser pulses are analyzed using a numerical model. Several representative pulse shaping capabilities of this technique are identified, which can significantly augment the performance of common passive pulse shaping methods operating in the Fourier domain. It is found that the use of phase-sensitive OPA shows a potential for significant compression of ~ 100 fs pulses, steepening of the rise time of ultrashort pulses, and production of pulse doublets and pulse trains. It is also shown that the group velocity mismatch can assist the shaping process. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems.

© 2010 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

Original Manuscript: May 10, 2010
Revised Manuscript: July 1, 2010
Manuscript Accepted: August 9, 2010
Published: August 13, 2010

Y. C. Yin, D. French, and I. Jovanovic, "Ultrafast temporal pulse shaping via phase-sensitive three-wave mixing," Opt. Express 18, 18471-18482 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  2. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable femtosecond pulse shaping by use of a multi-element liquid-crystal phase modulator," Opt. Lett. 15, 326-328 (1990). [CrossRef] [PubMed]
  3. M. A. Dugan, J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997). [CrossRef]
  4. M. E. Fermann, V. da Silva, D. A. Smith, Y. Silberberg, and A. M. Weiner, "Shaping of ultrashort optical pulses by using an integrated acousto-optic tunable filter," Opt. Lett. 18, 1505-1507 (1993). [CrossRef] [PubMed]
  5. P. Tournois, "Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems," Opt. Commun. 140, 245-249 (1997). [CrossRef]
  6. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000). [CrossRef]
  7. R. H. Stolen, and C. Lin, "Self-phase-modulation in silica optical fibers," Phys. Rev. A 17, 1448-1453 (1978). [CrossRef]
  8. W. J. Tomlinson, R. H. Stolenn, and C. V. Shank, "Compression of optical pulses chirped by self-phase modulation in fibers," J. Opt. Soc. Am. B 1, 139-149 (1984). [CrossRef]
  9. C. J. McKinstrie, R. O. Moore, S. Radic, and R. Jiang, "Phase-sensitive amplification of chirped optical pulses in fibers," Opt. Express 15, 3737-3758 (2007). [CrossRef] [PubMed]
  10. X. Liu, F. O. Ilday, K. Beckwitt, and F. W. Wise, "Femtosecond nonlinear polarization evolution based on cascade quadratic nonlinearities," Opt. Lett. 25, 1394-1396 (2000). [CrossRef]
  11. X. Liu, L. J. Qian, and F. W. Wise, "Generation of Optical Spatiotemporal Solitons," Phys. Rev. Lett. 82, 4631-4634 (1999). [CrossRef]
  12. X. Liu, L. Qian, and F. Wise, "High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2):χ(2) nonlinearity," Opt. Lett. 24, 1777-1779 (1999). [CrossRef]
  13. J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, "Efficient high-energy femtosecond pulse compression in quadratic media with flattop beams," Opt. Lett. 32, 2469-2471 (2007). [CrossRef] [PubMed]
  14. J. Moses, B. A. Malomed, and F. W. Wise, "Self-steepening of ultrashort optical pulses without self-phase modulation," Phys. Rev. A 76, 021802 (2007). [CrossRef]
  15. J. Moses, and F. W. Wise, "Controllable Self-Steepening of Ultrashort Pulses in Quadratic Nonlinear Media," Phys. Rev. Lett. 97, 073903 (2006). [CrossRef] [PubMed]
  16. L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, "Generation of squeezed states by parametric down conversion," Phys. Rev. Lett. 57, 2520-2523 (1986). [CrossRef] [PubMed]
  17. C. M. Caves, "Quantum limits on noise in linear amplifiers," Phys. Rev. D Part. Fields 26, 1817-1839 (1982). [CrossRef]
  18. G. M. D’Ariano, C. Macchiavello, N. Sterpi, and H. P. Yuen, "Quantum phase amplification," Phys. Rev. A 54, 4712-4718 (1996). [CrossRef] [PubMed]
  19. I. Jovanovic, D. French, J. C. Walter, and R. P. Ratowsky, "Numerical studies of multimodal phase-sensitive parametric amplification," J. Opt. Soc. Am. B 26, 1169-1175 (2009). [CrossRef]
  20. Y. R. Shen, The Principle of Nonlinear Optics, (Wiley, 2003).
  21. M. D. Feit, and J. A. Fleck, Jr., "Computation of mode properties in optical fiber waveguides by a propagating beam method," Appl. Opt. 19, 1154-1164 (1980). [CrossRef] [PubMed]
  22. M. Marangoni, C. Manzoni, R. Ramponi, and G. Cerullo, "Group-velocity control by quadratic nonlinear interactions," Opt. Lett. 31, 534-536 (2006). [CrossRef] [PubMed]
  23. J. Moses, and F. W. Wise, "Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal," Opt. Lett. 31, 1881-1883 (2006). [CrossRef] [PubMed]
  24. C. Laconis, and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998). [CrossRef]
  25. D. Meshulach, and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses," Phys. Rev. A 60, 1287-1292 (1999). [CrossRef]
  26. D. Meshulach, and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239 (1998). [CrossRef]
  27. T. Hornung, R. Meier, and M. Motzkus, "Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain," Chem. Phys. Lett. 326, 445-453 (2000). [CrossRef]
  28. R. Yano, and H. Gotoh, "Tunable terahertz electromagnetic wave generation using birefringent crystal and grating pair," Jpn. J. Appl. Phys. 44, 8470-8473 (2005). [CrossRef]
  29. X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen, "Quasi-phase matching and quantum-path control of high-harmonic generation using counterpropagating light," Nat. Photonics 3, 270-275 (2007).
  30. I. Will, and G. Klemz, "Generation of flat-top picosecond pulses by coherent pulse stacking in a multicrystal birefringent filter," Opt. Express 16, 14922-14937 (2008). [CrossRef] [PubMed]
  31. M. Renard, R. Lavorel, and O. Fraucher, "Pulse trains produced by phase-modulation of ultrashort optical pulses: tailoring and characterization," Opt. Express 12, 473-482 (2004). [CrossRef] [PubMed]
  32. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 um," J. Opt. Soc. Am. B 17, 2086-2094 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (575 KB)     
» Media 2: AVI (520 KB)     
» Media 3: AVI (625 KB)     
» Media 4: AVI (840 KB)     
» Media 5: AVI (659 KB)     
» Media 6: AVI (854 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited