OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18506–18518

A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths

Yung-Yuan Kao, Paul C.-P. Chao, and Chieh-Wen Hsueh  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18506-18518 (2010)
http://dx.doi.org/10.1364/OE.18.018506


View Full Text Article

Enhanced HTML    Acrobat PDF (2189 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work is dedicated to design a novel liquid crystal (LC) lens device with multiple ring electrodes in unequal widths, in order to offer tunability on focusing quality and to lower the level of applied voltage. The number and widths of the multiple ring electrodes are pre-designed and optimized to offer the on-line tunability on individual electrode voltages to render a better refraction index distribution for focusing, as compared to the past hole-type LC lenses. The resulted refractive index distribution is expected to offer similar focusing effects based on the theory of the gradient refraction index (GRIN) lens. The transparent electrodes of this new LC lens are placed at the inner surface of the LC cell to minimize the driving voltages, in results, less than 10V, for the same level of focusing power and an easy practical operation. A new fabrication process in the wafer level to bury bus lines is developed for generating smooth electrical fields over the lens aperture. In addition, a dielectric layer is coated between electrodes and the LC layer.

© 2010 OSA

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: April 22, 2010
Revised Manuscript: August 2, 2010
Manuscript Accepted: August 3, 2010
Published: August 16, 2010

Citation
Yung-Yuan Kao, Paul C.-P. Chao, and Chieh-Wen Hsueh, "A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths," Opt. Express 18, 18506-18518 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18506


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]
  2. T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989). [CrossRef]
  3. A. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999). [CrossRef] [PubMed]
  4. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232– L1233 (2002). [CrossRef]
  5. P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Liquid Crystals VIII, Proc. of SPIE 5518, Liq. Cryst. VIII, 136–143 (2004).
  6. M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(No. 9A), 6108–6111 (2004). [CrossRef]
  7. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005). [CrossRef]
  8. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002). [CrossRef]
  9. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004). [CrossRef] [PubMed]
  10. C. W. Chiu, Y. C. Lin, P. C. P. Chao, and A. Y. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16(23), 19277–19284 (2008). [CrossRef]
  11. Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005). [CrossRef]
  12. M. Bin Wang, “Ye, M. Yamaguchi, and S. Sato, “thin liquid crystal with low driving voltages,” Jpn. J. Appl. Phys. 48, 098004 (2009).
  13. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003). [CrossRef]
  14. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35(3), 336–338 (2010). [CrossRef] [PubMed]
  15. T. C. Kraan, T. van Bommel, and R. A. Hikmet, “Modeling liquid-crystal gradient-index lenses,” J. Opt. Soc. Am. A 24(11), 3467–3477 (2007). [CrossRef]
  16. M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008). [CrossRef]
  17. M. Sluijter, A. Herzog, D. K. G. de Boer, M. P. C. M. Krijn, H. P. Urbach, and H. P. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B 26(11), 2035–2043 (2009). [CrossRef]
  18. M. Kurihara and N. Hashimoto, “Liquid crystal optics for laser beam modulation,” Proc. SPIE 6374, U101–U106 (2006).
  19. C.-C. Cheng, C. A. Chang, C.-H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” 2009 SID International Symposium Digest of Technical Papers, 8, S365–S369–114 (2006).
  20. Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, ““An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” 2009 SID International Symposium,” Dig. Tech. Pap. XL, 111–114 (2009). [CrossRef]
  21. G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007). [CrossRef]
  22. E. Hecht, Optics, (Addision-Wesley, 2002).
  23. N. Damean, B. A. Parviz, J. N. Lee, T. Odom, and G. M. Whitesides, “Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems,” J. Micromech. Microeng. 15(1), 29–34 (2005). [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  25. N. Fraval and J. L. B. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths,” Appl. Opt. 49(15), 2778–2783 (2010). [CrossRef] [PubMed]
  26. T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys. 46(No. 5A), 2926–2931 (2007). [CrossRef]
  27. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited