OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18532–18542

Four-leaf-clover-shaped antenna for a THz photomixer

Insang Woo, Truong Khang Nguyen, Haewook Han, Hanjo Lim, and Ikmo Park  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18532-18542 (2010)
http://dx.doi.org/10.1364/OE.18.018532


View Full Text Article

Enhanced HTML    Acrobat PDF (1505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To improve the output power of a photomixer used as a THz source, we propose a four-leaf-clover-shaped antenna structure composed of a highly resonant radiation element and a stable DC feed element. The resonance characteristics of the proposed structure were first investigated on a half-infinite substrate as a simplified radiation environment to reduce the computation time. Based on the antenna characteristics on that half-infinite substrate, the antenna structure was designed to have a maximum total efficiency and a maximum directivity on an extended hemispherical lens. The input resistance of this structure was six times that of a full-wavelength dipole, significantly improving the mismatch efficiency between a photomixer and the antenna. The terahertz output power from this structure is expected to be 2.7 times that of a full-wavelength dipole.

© 2010 OSA

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(260.5740) Physical optics : Resonance
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Detectors

History
Original Manuscript: June 3, 2010
Revised Manuscript: August 11, 2010
Manuscript Accepted: August 12, 2010
Published: August 16, 2010

Citation
Insang Woo, Truong Khang Nguyen, Haewook Han, Hanjo Lim, and Ikmo Park, "Four-leaf-clover-shaped antenna for a THz photomixer," Opt. Express 18, 18532-18542 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18532


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol. 47(21), 3797–3805 (2002). [CrossRef] [PubMed]
  2. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  3. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124–126 (2004). [CrossRef]
  4. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photo-conducting hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984). [CrossRef]
  5. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990). [CrossRef]
  6. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993). [CrossRef]
  7. E. Bründermann, E. E. Haller, and A. V. Muravjov, “Terahertz emission of population-inverted hot-holes in single-crystalline silicon,” Appl. Phys. Lett. 73(6), 723–725 (1998). [CrossRef]
  8. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002). [CrossRef] [PubMed]
  9. E. Linfield, “Terahertz application: A source of fresh hope,” Nat. Photonics 1(5), 257–258 (2007). [CrossRef]
  10. R. E. Miles, X.-C. Zhang, H. Eisele, and A. Krotkus, Terahertz Frequency Detection and Identification of Materials and Objects, (Springer, Berlin, Germany, 2007), pp. 167–184.
  11. O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, and M. Hangyo, “Sub-THz emission properties of photoconductive antennas excited with multimode laser diode,” Jpn. J. Appl. Phys. 38(Part 1, No. 3A), 1388–1389 (1999). [CrossRef]
  12. K. Chen, Y. T. Li, M. H. Yang, W. Y. Cheung, C. L. Pan, and K. T. Chan, “Comparison of continuous-wave terahertz wave generation and bias-field-dependent saturation in GaAs:O and LT-GaAs antennas,” Opt. Lett. 34(7), 935–937 (2009). [CrossRef] [PubMed]
  13. S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001). [CrossRef]
  14. K. Moon, H. Han, and I. Park, “Terahertz folded half-wavelength dipole antenna for high output power,” in Topical Meeting on Microwave Photonics, (Seoul, Korea, 2005), pp. 301–304.
  15. K. Han, T. K. Nguyen, I. Park, and H. Han, “Terahertz Yagi-Uda antenna for high input resistance,” J. Infrared Milli Terahz Waves 31, 441–454 (2010).
  16. U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992). [CrossRef]
  17. S. Y. Chou, Y. Liu, and P. B. Fischer, “Tera-hertz metal-semiconductor-metal photodetectors with 25-nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992). [CrossRef]
  18. M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrate,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1985). [CrossRef]
  19. C. A. Balanis, Antenna Theory: Analysis and Design, (Wiley, New York, 1997), pp. 60–61.
  20. K. Moon, “Highly resonant antennas for terahertz photomixers,” Ph. D. dissertation, POSTECH, pp. 59–73, 2007.
  21. K. J. Button, Infrared and Millimeter Waves, vol. 10, (Academic Press, New York, 1983), pp.1–90.
  22. D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (1993). [CrossRef]
  23. M. J. M. van der Vorst, P. J. I. de Maagt, and M. H. A. Herben, “Effect on internal reflection on the radiation properties and input admittance of integrated lens antennas,” IEEE Trans. Microw. Theory Tech. 47(9), 1696–1704 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited