OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18550–18557

Theory for terahertz plasmons of metallic nanowires with sub-skin-depth diameters

Jie Yang, Qing Cao, and Changhe Zhou  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 18550-18557 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1219 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the propagation properties of terahertz plasmon of a metallic nanowire with sub-skin-depth diameter. By taking the small radius and the huge relative permittivity into account, we establish an approximate analytical description for this kind of surface plasmon. It is shown that the main propagation properties are closely related to the product of the radius of the metallic nanowire and the complex wave number of the metal. In addition, when the radius of the metal wire is smaller than the skin-depth, the size of the modal field is simply proportional to the radius of the metal wire. We also carefully verify these analytical predictions with rigorous numerical simulations.

© 2010 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: June 7, 2010
Revised Manuscript: July 23, 2010
Manuscript Accepted: July 27, 2010
Published: August 16, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Jie Yang, Qing Cao, and Changhe Zhou, "Theory for terahertz plasmons of metallic nanowires with sub-skin-depth diameters," Opt. Express 18, 18550-18557 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  2. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321 (1996). [CrossRef]
  3. M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).
  4. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  5. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13(2), 511–518 (2005). [CrossRef] [PubMed]
  6. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005). [CrossRef]
  7. T.-I. Jeon, J.-Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005). [CrossRef]
  8. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13(18), 7028–7034 (2005). [CrossRef] [PubMed]
  9. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13(26), 10815–10822 (2005). [CrossRef] [PubMed]
  10. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22(9), 2001–2008 (2005). [CrossRef]
  11. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006). [CrossRef] [PubMed]
  12. K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006). [CrossRef] [PubMed]
  13. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006). [CrossRef] [PubMed]
  14. J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires,” Opt. Express 14(19), 8772–8778 (2006). [CrossRef] [PubMed]
  15. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14(26), 13021–13029 (2006). [CrossRef] [PubMed]
  16. C. Themistos, B. M. A. Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite Element Solutions of Surface-Plasmon Modes in Metal-Clad Dielectric Waveguides at THz Frequency,” J. Lightwave Technol. 24(12), 5111–5118 (2006). [CrossRef]
  17. X. He, J. Cao, and S. Feng, “Simulation of the Propagation Property of Metal Wires Terahertz Waveguides,” Chin. Phys. Lett. 23(8), 2066–2069 (2006). [CrossRef]
  18. J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95(8), 1624–1640 (2007). [CrossRef]
  19. H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16(22), 18241–18248 (2008). [CrossRef] [PubMed]
  20. Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008). [CrossRef] [PubMed]
  21. P. W. Smorenburg, W. Op ’t Root, and O. J. Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches’,” Phys. Rev. B 78(11), 115415 (2008). [CrossRef]
  22. J. A. Deibel, K. Wang, M. Escarra, N. Berndsen, and D. M. Mittleman, “The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides,” C. R. Phys. 9(2), 215–231 (2008). [CrossRef]
  23. J. Yang, Q. Cao, and C. Zhou, “An explicit formula for metal wire plasmon of terahertz wave,” Opt. Express 17(23), 20806–20815 (2009). [CrossRef] [PubMed]
  24. H. Liang, S. Ruan, M. Zhang, and H. Su, “Nanofocusing of terahertz wave on conical metal wire waveguides,” Opt. Commun. 283(2), 262–264 (2010). [CrossRef]
  25. J. Yang, Q. Cao, and C. Zhou, “An analytical recurrence formula for the zero-order metal wire plasmon of terahertz wave,” J. Opt. Soc. Am. A 27(7), 1608–1612 (2010). [CrossRef]
  26. M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94(5), 051107 (2009). [CrossRef]
  27. V. Astley, R. Mendis, and D. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95(3), 031104 (2009). [CrossRef]
  28. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987 (2000). [CrossRef]
  29. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002). [CrossRef]
  30. J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004). [CrossRef] [PubMed]
  31. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef] [PubMed]
  32. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  33. G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. Ong Ling Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16(18), 13593–13598 (2008). [CrossRef] [PubMed]
  34. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008). [CrossRef] [PubMed]
  35. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999). [CrossRef]
  36. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449 (2000). [CrossRef]
  37. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000). [CrossRef]
  38. W. Shi and Y. J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation,” Appl. Phys. Lett. 82(25), 4435 (2003). [CrossRef]
  39. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006). [CrossRef] [PubMed]
  40. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007). [CrossRef]
  41. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009). [CrossRef] [PubMed]
  42. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009). [CrossRef]
  43. L. Martin-Moreno, “Terahertz technology: Mind the gap,” Nat. Photonics 3(3), 131–132 (2009). [CrossRef]
  44. M. Born, and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, 1975).
  45. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  46. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64(12), 125420 (2001). [CrossRef]
  47. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited