OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18565–18579

Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon

Kazunori Seno, Kenya Suzuki, Naoki Ooba, Kei Watanabe, Motohaya Ishii, Hirotaka Ono, and Shinji Mino  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18565-18579 (2010)
http://dx.doi.org/10.1364/OE.18.018565


View Full Text Article

Enhanced HTML    Acrobat PDF (2407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a multi-channel tunable optical dispersion compensator (TODC) that consists of an arrayed-waveguide grating (AWG) and liquid crystal on silicon (LCOS). By utilizing the AWG with a large angular dispersion and the LCOS with a flexible phase setting, we can construct a compact and flexible TODC that has a wide tuning range of chromatic dispersion. We confirmed experimentally that the TODC could realize channel-by-channel CD compensation for six WDM channels with a ± 800 ps/nm range and a 3 dB bandwidth of 24 GHz. We believe that the multi-channel operation of this TODC will help to reduce the cost and power consumption of high-speed optical transmission systems.

© 2010 OSA

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(130.2035) Integrated optics : Dispersion compensation devices
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Integrated Optics

History
Original Manuscript: June 16, 2010
Revised Manuscript: August 5, 2010
Manuscript Accepted: August 5, 2010
Published: August 16, 2010

Citation
Kazunori Seno, Kenya Suzuki, Naoki Ooba, Kei Watanabe, Motohaya Ishii, Hirotaka Ono, and Shinji Mino, "Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon," Opt. Express 18, 18565-18579 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18565


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Takiguchi, K. Okamoto, and K. Moriwaki, “Planar Lightwave Circuit Dispersion Equalizer,” J. Lightwave Technol. 14(9), 2003–2011 (1996). [CrossRef]
  2. Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent Progress on FBG-based Tunable Dispersion Compensators for 40 Gb/s Applications,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2007), paper OThP3.
  3. C. R. Doerr, L. W. Stulz, S. Chandrasekhar, and R. Pafchek, “Colorless Tunable Dispersion Compensator with 400-ps/nm Range Integrated With a Tunable Noise Filter,” IEEE Photon. Technol. Lett. 15(9), 1258–1260 (2003). [CrossRef]
  4. M. Shirasaki, and S. Cao, “Compensation of Chromatic Dispersion and Dispersion Slope Using a Virtually Imaged Phased Array,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2001), paper TuS1.
  5. C. R. Doerr, “Polarization-Independent Tunable Dispersion Compensator Comprised of a Silica Arrayed Waveguide Grating and a Polymer Slab,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2006), paper PDP9.
  6. D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact Colorless Tunable Dispersion Compensator With 1000-ps/nm Tuning Range for 40-Gb/s Data Rates,” J. Lightwave Technol. 24(1), 237–241 (2006). [CrossRef]
  7. G.-H. Lee, S. Xiao, and A. M. Weiner, “Optical Dispersion Compensator With >4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18(17), 1819–1821 (2006). [CrossRef]
  8. T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003). [CrossRef]
  9. D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. E. Simon, D. O. Lopez, D. M. Marom, and S. Chandrasekhar, “MEMS-Based Channelized Dispersion Compensator With Flat Passbands,” J. Lightwave Technol. 22(1), 101–105 (2004). [CrossRef]
  10. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol. 26(1), 73–78 (2008). [CrossRef]
  11. M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually Imaged Phased Array with Graded Reflectivity,” IEEE Photon. Technol. Lett. 11(11), 1443–1445 (1999). [CrossRef]
  12. H. Takenouchi, T. Ishii, and T. Goh, “8 THz Bandwidth Dispersion-Slope Compensator Module for Multiband 4Gbit/s WDM Transmission Systems Using an AWG and Spatial Phase Filter,” Electron. Lett. 37(12), 777–778 (2001). [CrossRef]
  13. K. Seno, N. Ooba, K. Suzuki, K. Watanabe, M. Ishii, and S. Mino, “Tunable Dispersion Compensator Consisting of Simple Optics with Arrayed-Waveguide Grating and Flat Mirror,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, (Academic, Newport Beach, CA., 2008), WE1.
  14. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide Grating for a Wavelength Reference Standard in DWDM Network Systems,” J. Lightwave Technol. 20(5), 850–853 (2002). [CrossRef]
  15. K. Seno, K. Suzuki, K. Watanabe, N. Ooba, M. Ishii, and S. Mino, “Channel-by-Channel Tunable Optical Dispersion Compensator Consisting of Arrayed-Waveguide Grating and Liquid Crystal on Silicon,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2008), paper OWP4.
  16. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed., (Elsevier, 2006), Chap. 9, Sec. 9.3.1.
  17. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000). [CrossRef]
  18. K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-Wavelength Channelized Tunable Optical Dispersion Compensator with Increased Bandwidth Consisting of Arrayed Waveguide Gratings and Liquid Crystal on Silicon,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2009), paper OThB3.
  19. K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-Wavelength Channel-by-Channel Tunable Optical Dispersion Compensator Using Combination of Arrayed-Waveguide and Bulk Gratings,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2010), paper OMT7.
  20. D. Sinefeld, C. R. Doerr, and D. M. Marom, “Photonic Spectral Processor Employing Two-Dimensional WDM Channel Separation and a Phase LCoS Modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2010), paper OMP5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited