OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18580–18591

Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime

Aleksandra Foltynowicz, Junyang Wang, Patrick Ehlers, and Ove Axner  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 18580-18591 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) system based on a narrow linewidth distributed-feedback laser and fiber-coupled acousto-optic and electro-optic modulators has been developed. Measurements of absorption and dispersion signals have been performed at pressures up to 1/3 atmosphere on weak acetylene transitions at 1551 nm. Multiline fitting routines were implemented to obtain transition parameters, i.e., center frequencies, linestrengths, and pressure broadening coefficients. The signal strength was shown to be linear with pressure and concentration, and independent of detection phase. The minimum detectable on-resonance absorption with a cavity with a finesse of 460 was 2 × 10−10 cm−1 for 1 minute of integration time.

© 2010 OSA

ToC Category:

Original Manuscript: June 24, 2010
Revised Manuscript: August 5, 2010
Manuscript Accepted: August 5, 2010
Published: August 16, 2010

Aleksandra Foltynowicz, Junyang Wang, Patrick Ehlers, and Ove Axner, "Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime," Opt. Express 18, 18580-18591 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ye, L. S. Ma, J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15(1), 6–15 (1998). [CrossRef]
  2. A. Foltynowicz, F. M. Schmidt, W. Ma, O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008). [CrossRef]
  3. L. Gianfrani, R. W. Fox, L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16(12), 2247–2254 (1999). [CrossRef]
  4. J. Bood, A. McIlroy, D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124(8), 084311 (2006). [CrossRef] [PubMed]
  5. N. J. van Leeuwen, A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21(10), 1713–1721 (2004). [CrossRef]
  6. F. M. Schmidt, A. Foltynowicz, W. Ma, O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24(6), 1392–1405 (2007). [CrossRef]
  7. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS - Improved detectability,” Opt. Express 15(17), 10822–10831 (2007). [CrossRef] [PubMed]
  8. C. L. Bell, G. Hancock, R. Peverall, G. A. D. Ritchie, J. H. van Helden, N. J. van Leeuwen, “Characterization of an external cavity diode laser based ring cavity NICE-OHMS system,” Opt. Express 17(12), 9834–9839 (2009). [CrossRef] [PubMed]
  9. C. Ishibashi, H. Sasada, “Near-infrared laser spectrometer with sub-Doppler resolution, high sensitivity, and wide tunability: A case study in the 1.65-μm region of CH3I spectrum,” J. Mol. Spectrosc. 200(1), 147–149 (2000). [CrossRef] [PubMed]
  10. M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3457–3468 (2004). [CrossRef] [PubMed]
  11. A. Foltynowicz, W. Ma, O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for quantitative trace gas detection,” Opt. Express 16(19), 14689–14702 (2008). [CrossRef] [PubMed]
  12. O. Axner, W. Ma, A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25(7), 1166–1177 (2008). [CrossRef]
  13. L. S. Ma, J. Ye, P. Dube, J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16(12), 2255–2268 (1999). [CrossRef]
  14. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]
  15. W. Ma, A. Foltynowicz, O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25(7), 1144–1155 (2008). [CrossRef]
  16. E. A. Whittaker, M. Gehrtz, G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2(8), 1320–1326 (1985). [CrossRef]
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983). [CrossRef]
  18. R. G. DeVoe, R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A: At. Mol. Opt. Phys. 30, 2827–2829 (1984).
  19. A. Foltynowicz, W. Ma, F. M. Schmidt, O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25(7), 1156–1165 (2008). [CrossRef]
  20. R. El Hachtouki, J. Vander Auwera, “Absolute line intensities in acetylene: the 1.5-μm region,” J. Mol. Spectrosc. 216(2), 355–362 (2002). [CrossRef]
  21. H. Tran, J. Y. Mandin, V. Dana, L. Regalia-Jarlot, X. Thomas, P. Von der Heyden, “Line intensities in the 1.5-μm spectral region of acetylene,” J. Quant. Spectrosc. Radiat. Transf. 108(3), 342–362 (2007). [CrossRef]
  22. D. Jacquemart, N. Lacome, J. Y. Mandin, V. Dana, H. Tran, F. K. Gueye, O. M. Lyulin, V. I. Perevalov, L. Regalia-Jarlot, “The IR spectrum of (C2H2)-C-12: Line intensity measurements in the 1.4 μm region and update of the databases,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 717–732 (2009). [CrossRef]
  23. S. W. Arteaga, C. M. Bejger, J. L. Gerecke, J. L. Hardwick, Z. T. Martin, J. Mayo, E. A. McIlhattan, J. M. F. Moreau, M. J. Pilkenton, M. J. Polston, B. T. Robertson, E. N. Wolf, “Line broadening and shift coefficients of acetylene at 1550 nm,” J. Mol. Spectrosc. 243(2), 253–266 (2007). [CrossRef]
  24. L. Fissiaux, M. Dhyne, M. Lepere, “Diode-laser spectroscopy: Pressure dependence of N-2-broadening coefficients of lines in the ν(4) + ν(5) band of C2H2,” J. Mol. Spectrosc. 254(1), 10–15 (2009). [CrossRef]
  25. P. Werle, R. Mucke, F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  26. A. Foltynowicz, I. Silander, O. Axner, are preparing a manuscript to be called 'Reduction of background signals from fiber-coupled electro-optic modulators in NICE-OHMS'.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited