OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18615–18624

Gires-Tournois interferometer type negative dispersion mirrors for deep ultraviolet pulse compression

Christopher A. Rivera, Stephen E. Bradforth, and Gabriel Tempea  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 18615-18624 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1022 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Typical femtosecond pulse compression of deep ultraviolet radiation consists of prism or diffraction grating pair chirp compensation but, both techniques introduce higher-order dispersion, spatial-spectral beam distortion and poor transmission. While negatively chirped dielectric mirrors have been used to compress near infrared and visible pulses to <10 fs, there has been no extension of this technique below 300 nm. We demonstrate the use of Gires-Tournois interferometer (GTI) negative dispersion multilayer dielectric mirrors designed for pulse compression in the deep ultraviolet region. GTI mirror designs are more robust than chirped mirrors and, can provide sufficient bandwidth for the compression of sub-30-fs pulses in the UV wavelength range. Compression of a 5 nm (FWHM) pulse centered between 266 and 271 nm to 30 fs has been achieved with less pulse broadening due to high-order dispersion and no noticeable spatial deformation, thereby improving the resolution of ultrafast techniques used to study problems such as fast photochemical reaction dynamics.

© 2010 OSA

OCIS Codes
(260.7190) Physical optics : Ultraviolet
(320.0320) Ultrafast optics : Ultrafast optics
(320.5520) Ultrafast optics : Pulse compression
(230.2035) Optical devices : Dispersion compensation devices

ToC Category:
Ultrafast Optics

Original Manuscript: July 13, 2010
Revised Manuscript: August 10, 2010
Manuscript Accepted: August 10, 2010
Published: August 16, 2010

Christopher A. Rivera, Stephen E. Bradforth, and Gabriel Tempea, "Gires-Tournois interferometer type negative dispersion mirrors for deep ultraviolet pulse compression," Opt. Express 18, 18615-18624 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Yamashita, M. Ishikawa, K. Torizuka, and T. Sato, “Femtosecond-pulse laser chirp compensated by cavity-mirror dispersion,” Opt. Lett. 11(8), 504–506 (1986). [CrossRef] [PubMed]
  2. P. Dombi, P. Rácz, M. Lenner, V. Pervak, and F. Krausz, “Dispersion management in femtosecond laser oscillators with highly dispersive mirrors,” Opt. Express 17(22), 20598–20604 (2009). [CrossRef] [PubMed]
  3. X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010). [CrossRef]
  4. C. F. Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, and D. Descamps, “Post-compression of high-energy femtosecond pulses using gas ionization,” Opt. Lett. 35(2), 253–255 (2010). [CrossRef] [PubMed]
  5. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994). [CrossRef] [PubMed]
  6. I. Matsuda, K. Misawa, and R. Lang, “Femtosecond chirp-variable apparatus using a chirped mirror pair for quantum coherent control,” Opt. Commun. 239(1-3), 181–186 (2004). [CrossRef]
  7. V. Pervak, F. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32(9), 1183–1185 (2007). [CrossRef] [PubMed]
  8. Y. Kida, S. Zaitsu, and T. Imasaka, “Generation of intense 11-fs ultraviolet pulses using phase modulation by two types of coherent molecular motions,” Opt. Express 16(18), 13492–13498 (2008). [CrossRef] [PubMed]
  9. A. S. Morlens, P. Balcou, P. Zeitoun, C. Valentin, V. Laude, and S. Kazamias, “Compression of attosecond harmonic pulses by extreme-ultraviolet chirped mirrors,” Opt. Lett. 30(12), 1554–1556 (2005). [CrossRef] [PubMed]
  10. C. G. Durfee Iii, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Opt. Lett. 22(20), 1565–1567 (1997). [CrossRef]
  11. C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24(10), 697–699 (1999). [CrossRef]
  12. N. Krebs, R. A. Probst, and E. Riedle, “Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter,” Opt. Express 18(6), 6164–6171 (2010). [CrossRef] [PubMed]
  13. K. Kosma, S. A. Trushin, W. E. Schmid, and W. Fuss, “Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:sapphire laser,” Opt. Lett. 33(7), 723–725 (2008). [CrossRef] [PubMed]
  14. S. A. Trushin, W. Fuss, K. Kosma, and W. E. Schmid, “Widely tunable ultraviolet sub-30-fs pulses from supercontinuum for transient spectroscopy,” Appl. Phys. B 85(1), 1–5 (2006). [CrossRef]
  15. S. A. Trushin, K. Kosma, W. Fuss, and W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon,” Opt. Lett. 32(16), 2432–2434 (2007). [CrossRef] [PubMed]
  16. M. Beutler, M. Ghotbi, F. Noack, D. Brida, C. Manzoni, and G. Cerullo, “Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier,” Opt. Lett. 34(6), 710–712 (2009). [CrossRef] [PubMed]
  17. I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001). [CrossRef]
  18. A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett. 87(2), 021107 (2005). [CrossRef]
  19. C. H. Brito Cruz, P. C. Becker, R. L. Fork, and C. V. Shank, “Phase correction of femtosecond optical pulses using a combination of prisms and gratings,” Opt. Lett. 13(2), 123–125 (1988). [CrossRef] [PubMed]
  20. B. J. Pearson and T. C. Weinacht, “Shaped ultrafast laser pulses in the deep ultraviolet,” Opt. Express 15(7), 4385–4388 (2007). [CrossRef] [PubMed]
  21. C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17(21), 18788–18793 (2009). [CrossRef]
  22. G. Steinmeyer, “Dispersion compensation by microstructured optical devices in ultrafast optics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1663–1671 (2004).
  23. G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45(7), 1484–1490 (2006). [CrossRef] [PubMed]
  24. M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003). [CrossRef]
  25. A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  26. A. C. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. H. Tao, and R. M. Stratt, “Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids,” Science 311(5769), 1907–1911 (2006). [CrossRef] [PubMed]
  27. Z. Y. Li, D. Abramavicius, W. Zhuang, and S. Mukamel, “Two-dimensional electronic correlation spectroscopy of the n pi* and pi pi* protein backbone transitions: A simulation study,” Chem. Phys. 341(1-3), 29–36 (2007). [CrossRef]
  28. D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc. 132(22), 7769–7775 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited