OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18642–18648

Effect of Yb3+ concentration on the broadband emission intensity and peak wavelength shift in Yb/Bi ions co-doped silica-based glasses

Nengli Dai, Bing Xu, Zuowen Jiang, Jingang Peng, Haiqing Li, Huaixun Luan, Luyun Yang, and Jinyan Li  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18642-18648 (2010)
http://dx.doi.org/10.1364/OE.18.018642


View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of Yb3+ concentration on the broadband emission intensity and peak wavelength shift in Yb/Bi ions co-doped silicate glasses is investigated. The optimal Bi2O3 concentration range is about 2.0-2.5mol% in 65SiO2-10Al2O3-25CaO matrix (SAC glasses). For Yb/Bi codoped SAC glasses, the maximum emission intensity excited by 980nm LD is ~30 times and 1.5 times higher than that of single Bi-doped SAC glasses excited by 980nm and 808nm LD, respectively, the peak emission shows obvious red-shift from 1185 nm to 1235 nm band with the Yb2O3 concentration change from 0 to 3.0 mol%. For the same Yb2O3 concentration in SAC glasses, the measured fluorescence lifetime near 1020nm of single Yb3+-doped glasses is longer than that of Yb/Bi codoping glasses, which implyes the efficient energy transfer from Yb3+ to Bin+ in SAC glasses. The results indicate Yb2O3 can be induced into the bismuth-doped silicate glasses to enhance the emission intensity and control the peak wavelength.

© 2010 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Materials

History
Original Manuscript: March 25, 2010
Revised Manuscript: May 24, 2010
Manuscript Accepted: June 4, 2010
Published: August 17, 2010

Citation
Nengli Dai, Bing Xu, Zuowen Jiang, Jingang Peng, Haiqing Li, Huaixun Luan, Luyun Yang, and Jinyan Li, "Effect of Yb3+ concentration on the broadband emission intensity and peak wavelength shift in Yb/Bi ions co-doped silica-based glasses," Opt. Express 18, 18642-18648 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006). [CrossRef] [PubMed]
  2. S. V. Firstov, I. A. Bufetov, V. F. Khopin, A. V. Shubin, A. M. Smirnov, L. D. Iskhakova, N. N. Vechkanov, A. N. Guryanov, and E. M. Dianov, “2 W bismuth doped fiber lasers in the wavelength range 1300-1500 nm and variation of Bi-doped fiber parameters with core composition,” Laser Phys. Lett. 6(9), 665–670 (2009). [CrossRef]
  3. E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B 24(8), 1749–1755 (2007). [CrossRef]
  4. J. Gopinath, H. Shen, H. Sotobayashi, E. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 microm,” Opt. Express 12(23), 5697–5702 (2004). [CrossRef] [PubMed]
  5. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001). [CrossRef]
  6. M. Y. Peng, J. R. Qiu, D. P. Chen, X. G. Meng, and C. S. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express 13(18), 6892–6898 (2005). [CrossRef] [PubMed]
  7. M. Y. Peng, J. R. Qiu, D. P. Chen, X. G. Meng, I. Y. Yang, X. W. Jiang, and C. S. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004). [CrossRef] [PubMed]
  8. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005). [CrossRef] [PubMed]
  9. X. M. Xian-Gengng, P. Ming-Ying, C. Dan-Ping, Y. Lv-Yun, J. Xiong-Wei, Z. Cong-Shan, and Q. Jian-Rong, “Broadband infrared luminescence of bismuth-doped borosilicate glasses,” Chin. Phys. Lett. 22(3), 615–617 (2005). [CrossRef]
  10. G. Yang, D. P. Chen, J. Ren, Y. S. Xu, H. D. Zeng, Y. X. Yang, and G. R. Chenw, “Effects of melting temperature on the broadband infrared luminescence of bi-doped and Bi/Dy co-doped chalcohalide glasses,” J. Am. Ceram. Soc. 90(11), 3670–3672 (2007). [CrossRef]
  11. Y. Q. Qiu and Y. H. Shen, “Investigation on the spectral characteristics of bismuth doped silica fibers,” Opt. Mater. 31(2), 223–228 (2008). [CrossRef]
  12. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912–3 (2006). [CrossRef]
  13. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110–3 (2007). [CrossRef]
  14. J. J. Ren, J. R. Qiu, D. P. Chen, X. Hu, X. W. Jiang, and C. S. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008). [CrossRef]
  15. S. Yoo, M. P. Kalita, J. Nilsson, and J. Sahu, “Excited state absorption measurement in the 900-1250 nm wavelength range for bismuth-doped silicate fibers,” Opt. Lett. 34(4), 530–532 (2009). [CrossRef] [PubMed]
  16. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009). [CrossRef]
  17. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003). [CrossRef]
  18. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103–3 (2007). [CrossRef]
  19. S. F. Zhou, H. F. Dong, H. P. Zeng, J. H. Hao, J. X. Chen, and J. R. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO2-Ga2O3-Al2O3 glasses,” J. Appl. Phys. 103(10), 103532–4 (2008). [CrossRef]
  20. Q. Qian, Q. Y. Zhang, G. F. Yang, Z. M. Yang, and Z. H. Jiang, “Enhanced broadband near-infrared emission from Bi-doped glasses by codoping with metal oxides,” J. Appl. Phys. 104(4), 043518–3 (2008). [CrossRef]
  21. J. Ruan, Y. Z. Chi, X. F. Liu, G. P. Dong, G. Lin, D. P. Chen, E. Wu, and J. R. Qiu, “Enhanced near-infrared emission and broadband optical amplification in Yb-Bi co-doped germanosilicate glasses,” J. Appl. Phys., J. Phys. D 42(15), 155102–6 (2009). [CrossRef]
  22. J. Ruan, E. Wu, B. T. Wu, H. P. Zeng, Q. Zhang, G. P. Dong, Y. B. Qiao, D. P. Chen, and J. R. Qiu, “Spectral properties and broadband optical amplification of Yb-Bi codoped MgO-Al2O3-ZnO-SiO2 glasses,” J. Opt. Soc. Am. B 26(4), 778–782 (2009). [CrossRef]
  23. V. V. Dvoyrin, A. V. Kir'yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Absorption, Gain, and Laser Action in BismuthDoped Aluminosilicate Optical Fibers,” IEEE J. Quantum Electron. 46(2), 182–190 (2010). [CrossRef]
  24. T. Haruna, J. Iihara, and M. Onishi, “Bismuth-doped silicate glass fiber for ultra-broadband amplification media,” Proc. SPIE 6389, 638903 (2006). [CrossRef]
  25. M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited