OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18671–18684

Broadband transmission in hollow-core Bragg fibers with geometrically distributed multilayered cladding

Dora Juan Juan Hu, Gandhi Alagappan, Yong-Kee Yeo, Perry Ping Shum, and Ping Wu  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 18671-18684 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2024 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the first time, the quasiperiodic Bragg fibers with geometrically distributed multilayered cladding are proposed and analyzed. We demonstrate that hollow-core Bragg fibers with quasiperiodic dielectric multilayer cladding can achieve low loss transmission over a broadband wavelength range of more than an octave (from 0.81 μ m to 1.7 μ m ). The periods of the Bragg blocks follows a geometrical progression with a common ratio r<rc , where rc is defined as the critical ratio of the periods of two adjacent Bragg blocks. The arrangement of the quasiperiodic cladding can significantly modify the characteristics of the fiber, leading to a broadening of the guiding range compared to a hollow Bragg fiber with uniform periodic multilayer cladding structure. In general, a larger r value results in a broader guiding range. More Bragg blocks in the cladding and more unit cells in each Bragg block lead to a lower fiber modal loss.

© 2010 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(230.7370) Optical devices : Waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 13, 2010
Revised Manuscript: January 24, 2010
Manuscript Accepted: January 30, 2010
Published: August 18, 2010

Dora Juan Juan Hu, Gandhi Alagappan, Yong-Kee Yeo, Perry Ping Shum, and Ping Wu, "Broadband transmission in hollow-core Bragg fibers with geometrically distributed multilayered cladding," Opt. Express 18, 18671-18684 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, A. Yariv, and E. Maron, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978). [CrossRef]
  2. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002). [CrossRef] [PubMed]
  3. D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application,” IEEE Sens. J. 8(7), 1280–1286 (2008). [CrossRef]
  4. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998). [CrossRef] [PubMed]
  5. G. Vienne, Y. Xu, C. Jakobsen, H.-J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express 12(15), 3500–3508 (2004). [CrossRef] [PubMed]
  6. A. Husakov and J. Herrmann, “Chirped multilayer hollow waveguides with broadband transmission,” Opt. Express 17(5), 3025–3024 (2009). [CrossRef]
  7. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17(17), 14851–14864 (2009). [CrossRef] [PubMed]
  8. G. Alagappan and P. Wu, “Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles,” Opt. Express 17(14), 11550–11557 (2009). [CrossRef] [PubMed]
  9. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001). [CrossRef] [PubMed]
  10. J. D. Joannapolous, R. D. Meade, and J. N. Winn, Photonic Crystals—Molding the Flow of Light (Princeton University Press, 1995).
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley-Interscience 2003)
  12. S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2008)
  13. Published Database of optical constants by Photonic Bandgap Fibers & Devices Group [Online]. Available: http://mit-pbg.mit.edu/pages/database.html
  14. G. Xu, W. Zhang, Y. Huang, and J. Peng, “Loss characteristics of single-HE11-mode Bragg fiber,” J. Lightwave Technol. 25(1), 359–366 (2007). [CrossRef]
  15. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited