OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18732–18743

Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: A theoretical model

Mohammad Sabaeian, Laleh Mousave, and Hamid Nadgaran  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18732-18743 (2010)
http://dx.doi.org/10.1364/OE.18.018732


View Full Text Article

Enhanced HTML    Acrobat PDF (1222 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fraction of the fundamental beam energy deposited into nonlinear crystals to generate second harmonic waves (SHW) causes a temperature gradient within the crystal. This temperature inhomogeneity can alter the refractive index of the medium leading to a well-known effect called thermal dispersion. Therefore, the generated SHW suffers from thermal lensing and a longitudinal thermal phase mismatching. In this work by coupling the heat equation with second harmonic generation (SHG) formalism applied to type-II configuration along with walk-off effect, we investigate the continuous wave (CW) SHW beam profile and conversion efficiency when a non-linear KTP crystal is under induced thermal load. We have demonstrated for average and high powers, the thermal de-phasing lead to considerable reduction in SHG compared to an ideal case in which induced heat is neglected.

© 2010 OSA

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 26, 2010
Revised Manuscript: July 10, 2010
Manuscript Accepted: July 11, 2010
Published: August 18, 2010

Citation
Mohammad Sabaeian, Laleh Mousave, and Hamid Nadgaran, "Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: a theoretical model," Opt. Express 18, 18732-18743 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18732


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Okada and S. Ieiri, “Influence of self-induced thermal effects on second harmonic generation,” IEEE J. Quantum Electron. 7(9), 469–470 (1971). [CrossRef]
  2. J. D. Barry and C. J. Kennedy, “Thermo-optical effects of intracavity Ba2Na(NbO3) on a frequency-doubled Nd:YAG laser,” IEEE J. Quantum Electron. 11, 575–579 (1975). [CrossRef]
  3. D. T. Hon, “Electro-optical compensation for self-heating in CD*A during second-harmonic generation,” IEEE J. Quantum Electron. 12(2), 148–151 (1976). [CrossRef]
  4. D. T. Hon and H. Bruesselabach, “Beam Shaping to Suppress Phase Mismatch in High Power Second-Harmonic Generation,” IEEE J. Quantum Electron. 16(12), 1356–1364 (1980). [CrossRef]
  5. E. Moses, H. Brusselbach, D. Stovall, and D. T. Hon, in Proceeding of Soc. Opt. Quantum Electron. Conf. Lasers, Appl., (Orlando, FL. 1978).
  6. D. Eimerl, “High Average Power Harmonic Generation,” IEEE J. Quantum Electron. 23(5), 575–592 (1987). [CrossRef]
  7. S. Seidel and G. Mann, “Numerical modeling of thermal effects in nonlinear crystal for high power second harmonic generation,” Proc. SPIE 2989, 204–214 (1997). [CrossRef]
  8. J. Zheng, Sh. Zhao, Q. Wang, X. Zhang, and L. Chen, “Influence of thermal effect on KTP type-II phase-matching second-harmonic generation,” Opt. Commun. 199(1-4), 207–214 (2001). [CrossRef]
  9. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990). [CrossRef]
  10. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008). [CrossRef] [PubMed]
  11. K. H. Hong, C. J. Lai, A. Siddiqui, and F. X. Kärtner, “130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express 17(19), 16911–16919 (2009). [CrossRef] [PubMed]
  12. R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43 W picosecond laser and second-harmonic generation experiment,” Opt. Commun. 282(4), 611–613 (2009). [CrossRef]
  13. M. Sabaeian and H. Nadgaran, “Bessel-Gauss beams: Investigation of thermal effects on their generation,” Opt. Commun. 281(4), 672–678 (2008). [CrossRef]
  14. Zh. Ren, Zh. Huang, S. Jia, Y. Ge, and J. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282(2), 263–266 (2009). [CrossRef]
  15. Ch. Liu, Th. Riesbeck, X. Wang, J. Ge, Zh. Xiang, J. Chen, and H. J. Eichler, “Influence of spherical aberrations on the performance of dynamically stable resonators,” Opt. Commun. 281, 5222–5228 (2008). [CrossRef]
  16. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: Properties and new applications,” J. Opt. Soc. Am. B 6(4), 622–633 (1989). [CrossRef]
  17. K. Asaumi, “Second-Harmonic Power of KTiOPO4 with Double Refraction,” Appl. Phys. B 54(4), 265–270 (1992). [CrossRef]
  18. P. K. Mukhopadhyay, S. K. Sharma, K. Ranganthan, P. K. Gupta, and T. P. S. Nathan, “Efficient and high-power intracavity frequency doubled diode-side-pumped Nd:YAG/KTP continuous wave (CW) green laser,” Opt. Commun. 259(2), 805–811 (2006). [CrossRef]
  19. R. G. Smith, “Theory of intraccavity optical second harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970). [CrossRef]
  20. J. D. Barry and C. J. Kennedly, “Thermooptical effects of intracavity Ba2Na(NbO3)5 on a frequency doubling NdYAG laser,” IEEE J. Quantum Electron. 11, 575–579 (1975). [CrossRef]
  21. F. Q. Jia, Q. Zheng, Q. H. Xue, Y. K. Bu, and L. S. Qian, “High-power high-repetition-rate UV light at 355 nm generated by a diode-end-pumped passively Q-switched Nd:YAG laser,” Appl. Opt. 46(15), 2975–2979 (2007). [CrossRef] [PubMed]
  22. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press 2008), Chapt. 2.
  23. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in nonlinear medium,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]
  24. M. Sabaeian, H. Nadgaran, and L. Mousave, “Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser,” Appl. Opt. 47(13), 2317–2325 (2008). [CrossRef] [PubMed]
  25. K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27(5), 1137–1140 (1991). [CrossRef]
  26. D. Zhang, J. Lu, B. Feng, and J. Zhang, “Increased temperature bandwith of second harmonic generator using two KTiOPO4 crystals cut at different angles,” Opt. Commun. 281(10), 2918–2922 (2008). [CrossRef]
  27. Y. Bi, R. Li, Y. Feng, X. Lin, D. Cui, and Z. Xu, “Walk-off compensation of second harmonic generation in type-II phase-matched configuration with controled temperature,” Opt. Commun. 218(1-3), 183–187 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited