OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18763–18768

Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit

Apostolos Argyris, Stavros Deligiannidis, Evangelos Pikasis, Adonis Bogris, and Dimitris Syvridis  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 18763-18768 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1121 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the present work a photonic integrated circuit (PIC) that emits broadband chaotic signals is employed for ultra-fast generation of true random bit sequences. Chaotic dynamics emerge from a DFB laser, accompanied by a monolithic integrated 1-cm long external cavity (EC) that provides controllable optical feedback. The short length minimizes the existence of external cavity modes, so flattened broadband spectra with minimized intrinsic periodicities can emerge. After sampling and quantization - without including optical de-correlation techniques and using most significant bits (MSB) elimination post-processing - truly random bit streams with bit-rates as high as 140 Gb/s can be generated. Finally, the extreme robustness of the random bit generator for adaptive bit-rate operation and for various operating conditions of the PIC is demonstrated.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.1540) Lasers and laser optics : Chaos
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Integrated Optics

Original Manuscript: June 17, 2010
Revised Manuscript: July 20, 2010
Manuscript Accepted: July 20, 2010
Published: August 18, 2010

Apostolos Argyris, Stavros Deligiannidis, Evangelos Pikasis, Adonis Bogris, and Dimitris Syvridis, "Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit," Opt. Express 18, 18763-18768 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Ferguson, and B. Schneier, Practical Cryptography (John Wiley & Sons, 2003).
  2. http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf (2001).
  3. W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 44(6), 521–528 (1997). [CrossRef]
  4. J. T. Gleeson, “Truly random number generator based on turbulent electroconvection,” Appl. Phys. Lett. 81(11), 1949 (2002). [CrossRef]
  5. M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003). [CrossRef]
  6. C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with a metastability-based quality control,” IEEE J. Solid-state Circuits 43(1), 78–85 (2008). [CrossRef]
  7. J.-L. Danger, S. Guilley, and P. Hoogvorst, “High speed true random number generator based on open loop structures in FPGAs,” Microelectron. J. 40(11), 1650–1656 (2009). [CrossRef]
  8. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 031109 (2008). [CrossRef]
  9. B. Qi, Y.-M. Chi, H.-K. Lo, and L. Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett. 35(3), 312–314 (2010). [CrossRef] [PubMed]
  10. M. A. Wayne and P. G. Kwiat, “Low-bias high-speed quantum random number generator via shaped optical pulses,” Opt. Express 18(9), 9351–9357 (2010). [CrossRef] [PubMed]
  11. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980). [CrossRef]
  12. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28(1), 93–108 (1992). [CrossRef]
  13. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008). [CrossRef]
  14. K. Petermann, Laser diode modulation and noise, (Kluwer Academic Publ., 1991).
  15. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009). [CrossRef] [PubMed]
  16. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010). [CrossRef]
  17. K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010). [CrossRef] [PubMed]
  18. A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008). [CrossRef] [PubMed]
  19. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010). [CrossRef] [PubMed]
  20. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer-Verlag, 2006).
  21. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray and S. Vo, “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications,” NIST Special Publication 800–22 Revision 1a (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited