OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18769–18778

Brillouin optical time-domain analysis assisted by second-order Raman amplification

Sonia Martin-Lopez, Mercedes Alcon-Camas, Felix Rodriguez, Pedro Corredera, Juan Diego Ania-Castañon, Luc Thévenaz, and Miguel Gonzalez-Herraez  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 18769-18778 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1028 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and experimentally demonstrate a new method to extend the range of Brillouin optical time domain analysis (BOTDA) systems. It exploits the virtual transparency created by second-order Raman pumping in optical fibers. The idea is theoretically analyzed and experimentally demonstrated in a 50 km fiber. By working close to transparency, we also show that the measurement length of the BOTDA can be increased up to 100 km with 2 meter resolution. We envisage extensions of this technique to measurement lengths well beyond this value, as long as the issue of relative intensity noise (RIN) of the primary Raman pump can be avoided.

© 2010 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin
(350.5500) Other areas of optics : Propagation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 22, 2010
Revised Manuscript: July 29, 2010
Manuscript Accepted: August 1, 2010
Published: August 18, 2010

Sonia Martin-Lopez, Mercedes Alcon-Camas, Felix Rodriguez, Pedro Corredera, Juan Diego Ania-Castañon, Luc Thévenaz, and Miguel Gonzalez-Herraez, "Brillouin optical time-domain analysis assisted by second-order Raman amplification," Opt. Express 18, 18769-18778 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990). [CrossRef]
  2. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18(18), 1561–1563 (1993), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-18-18-1561 . [CrossRef] [PubMed]
  3. M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-10-758 . [CrossRef] [PubMed]
  4. M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Structural monitoring by use of a Brillouin distributed sensor,” Appl. Opt. 38(13), 2755–2759 (1999), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-13-2755 . [CrossRef]
  5. H. Naruse, M. Tateda, H. Ohno, and A. Shimada, “Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors,” Appl. Opt. 41(34), 7212–7217 (2002), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-34-7212 . [CrossRef] [PubMed]
  6. T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989), http://www.opticsinfobase.org/abstract.cfm?URI=ol-14-8-408 . [CrossRef] [PubMed]
  7. K.-Y. Song, M. González Herráez, and L. Thévenaz, “Mapping of Chromatic-Dispersion Distribution Along Optical Fibers With 20-m Spatial Resolution,” J. Lightwave Technol. 23, 4140- (2005) http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-23-12-4140
  8. A. Vedadi, D. Alasia, E. Lantz, H. Maillotte, L. Thévenaz, M. González-Herráez, and T. Sylvestre, “Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers,” IEEE Photon. Technol. Lett. 19(3), 179–181 (2007). [CrossRef]
  9. M. Niklès, “Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications”. Third European Workshop on Optical Fiber Sensors, 66190D, Italy, 2007.
  10. A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Spatial Resolution Enhancement of a Brillouin-Distributed Sensor Using a Novel Signal Processing Method,” J. Lightwave Technol. 17(7), 1179–1183 (1999), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-17-7-1179 . [CrossRef]
  11. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors,” Opt. Express 16(23), 19097–19111 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-23-19097 . [CrossRef]
  12. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-6-1321 . [CrossRef]
  13. F. Rodriguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010), http://dx.doi.org/10.1109/JLT.2010.2051141 . [CrossRef]
  14. G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8459 . [CrossRef] [PubMed]
  15. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12(19), 4372–4377 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4372 . [CrossRef] [PubMed]
  16. M. Alcón-Camas, and J. D. Ania-Castañón, “Relative Intensity Noise transfer in high-order distributed amplification through ultra-long fibre cavities”, in Proc. of SPIE Photonics North 2010, Session 14, Niagara Falls, Canada.
  17. B. Bristiel, P. Shifeng Jiang, Gallion, and E. Pincemin, “New model of noise figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006). [CrossRef]
  18. S. Foaleng Mafang, F. Rodriguez, S. Martin-Lopez, M. González-Herráez, and L. Thévenaz, “Impact of self phase modulation on the performance of Brillouin distributed fibre sensors” accepted for presentation at the Fourth European Workshop on Optical Fiber Sensors (EWOFS 2010), Porto, Portugal.
  19. V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. Academic Press, San Diego, 2007. Chap. 9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited