OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18779–18792

Rapid ratiometric determination of hemoglobin concentration using UV-VIS diffuse reflectance at isosbestic wavelengths

Janelle E. Phelps, Karthik Vishwanath, Vivide T. C. Chang, and Nirmala Ramanujam  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18779-18792 (2010)
http://dx.doi.org/10.1364/OE.18.018779


View Full Text Article

Enhanced HTML    Acrobat PDF (1262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a ratiometric method capable of estimating total hemoglobin concentration from optically measured diffuse reflectance spectra. The three isosbestic wavelength ratio pairs that best correlated to total hemoglobin concentration independent of saturation and scattering were 545/390, 452/390, and 529/390 nm. These wavelength pairs were selected using forward Monte Carlo simulations which were used to extract hemoglobin concentration from experimental phantom measurements. Linear regression coefficients from the simulated data were directly applied to the phantom data, by calibrating for instrument throughput using a single phantom. Phantoms with variable scattering and hemoglobin saturation were tested with two different instruments, and the average percent errors between the expected and ratiometrically-extracted hemoglobin concentration were as low as 6.3%. A correlation of r = 0.88 between hemoglobin concentration extracted using the 529/390 nm isosbestic ratio and a scalable inverse Monte Carlo model was achieved for in vivo dysplastic cervical measurements (hemoglobin concentrations have been shown to be diagnostic for the detection of cervical pre-cancer by our group). These results indicate that use of such a simple ratiometric method has the potential to be used in clinical applications where tissue hemoglobin concentrations need to be rapidly quantified in vivo.

© 2010 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 24, 2010
Revised Manuscript: August 14, 2010
Manuscript Accepted: August 15, 2010
Published: August 18, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Janelle E. Phelps, Karthik Vishwanath, Vivide T. C. Chang, and Nirmala Ramanujam, "Rapid ratiometric determination of hemoglobin concentration using UV-VIS diffuse reflectance at isosbestic wavelengths," Opt. Express 18, 18779-18792 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18779


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Tjalma, E. Van Marck, J. Weyler, L. Dirix, A. Van Daele, G. Goovaerts, G. Albertyn, and P. van Dam, “Quantification and prognostic relevance of angiogenic parameters in invasive cervical cancer,” Br. J. Cancer 78(2), 170–174 (1998). [CrossRef] [PubMed]
  2. J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, and C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol. 24(2), 103–113 (2002). [PubMed]
  3. N. Weidner, P. R. Carroll, J. Flax, W. Blumenfeld, and J. Folkman, “Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma,” Am. J. Pathol. 143(2), 401–409 (1993). [PubMed]
  4. J. F. Jansen, J. A. Koutcher, and A. Shukla-Dave, “Non-invasive imaging of angiogenesis in head and neck squamous cell carcinoma,” Angiogenesis (2010).
  5. K. Maeda, Y. S. Chung, S. Takatsuka, Y. Ogawa, T. Sawada, Y. Yamashita, N. Onoda, Y. Kato, A. Nitta, Y. Arimoto, Y. Kondo, and M. Sowa, “Tumor angiogenesis as a predictor of recurrence in gastric carcinoma,” J. Clin. Oncol. 13(2), 477–481 (1995). [PubMed]
  6. S. C. Vieira, L. C. Zeferino, B. B. Da Silva, G. Aparecida Pinto, J. Vassallo, G. A. Carasan, and N. G. De Moraes, “Quantification of angiogenesis in cervical cancer: a comparison among three endothelial cell markers,” Gynecol. Oncol. 93(1), 121–124 (2004). [CrossRef] [PubMed]
  7. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992). [CrossRef] [PubMed]
  8. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  9. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006). [CrossRef] [PubMed]
  10. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  11. M. L. Ellsworth, R. N. Pittman, and C. G. Ellis, “Measurement of hemoglobin oxygen saturation in capillaries,” Am. J. Physiol. 252(5 Pt 2), H1031–H1040 (1987). [PubMed]
  12. R. N. Pittman and B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38(2), 315–320 (1975). [PubMed]
  13. Q. Liu and T. Vo-Dinh, “Spectral filtering modulation method for estimation of hemoglobin concentration and oxygenation based on a single fluorescence emission spectrum in tissue phantoms,” Med. Phys. 36(10), 4819–4829 (2009). [CrossRef] [PubMed]
  14. J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009). [CrossRef] [PubMed]
  15. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003),” IEEE Trans. Biomed. Eng. 50(11), 1233–1242 (2003). [CrossRef] [PubMed]
  16. S. Prahl, “Optical Properties Spectra,” (Oregon Medical Laser Center, 2003).
  17. S. Prahl, “Mie Scattering Program,” (Oregon Medical Laser Center, 2005).
  18. J. E. Bender, A. B. Shang, E. W. Moretti, B. Yu, L. M. Richards, and N. Ramanujam, “Noninvasive monitoring of tissue hemoglobin using UV-VIS diffuse reflectance spectroscopy: a pilot study,” Opt. Express 17(26), 23396–23409 (2009). [CrossRef]
  19. T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010). [CrossRef] [PubMed]
  20. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36(4), 949–957 (1997). [CrossRef] [PubMed]
  21. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008). [CrossRef] [PubMed]
  22. V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia 11(4), 325–332 (2009). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited