OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18793–18804

Second–harmonic generation in poled polymers: pre–poling history paradigm

G. Pawlik, I. Rau, F. Kajzar, and A. C. Mitus  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18793-18804 (2010)
http://dx.doi.org/10.1364/OE.18.018793


View Full Text Article

Enhanced HTML    Acrobat PDF (2386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental studies of second harmonic generation (SHG) from electric-field poled PMMA - DR1 system show occurrence of a maximum in diagonal and off diagonal tensor components χ(2)(−2ω; ω, ω) at 15 mol % concentration and a rapid decrease above, with a stabilization. The origin of the observed concentration dependence is studied using the Monte Carlo (MC) modeling. We find that presence of maximum is conditioned by the pre-poling history of the sample, when entanglement of linear dipolar structures takes place. Length of the pre-poling interval is an important kinetic parameter which differentiates between various non-exponential kinetics of build-up of polar phase responsible for strong/weak SHG susceptibility.

© 2010 Optical Society of America

OCIS Codes
(000.6590) General : Statistical mechanics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(310.3840) Thin films : Materials and process characterization

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 24, 2010
Revised Manuscript: July 18, 2010
Manuscript Accepted: August 11, 2010
Published: August 18, 2010

Citation
G. Pawlik, I. Rau, F. Kajzar, and A. C. Mitus, "Second–harmonic generation in poled polymers: pre–poling history paradigm," Opt. Express 18, 18793-18804 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18793


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Sekkat, and W. Knoll, Photoreactive Organic Thin Films (Academic Press, 2002).
  2. I. Rau, and F. Kajzar, “Second harmonic generation and its applications,” Nonl. Opt. Quant. Opt. 38, 99–140 (2008).
  3. Y.-Ch. Lee, “Role of Carbohydrates in Oxidative Modification of Fibrinogen and Other Plasma Proteins” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich and C. Y.-C. Lee, Eds. (NATO ASI Series High Technology Vol. 9, Kluwer, Dordrecht, 1995), pp. 175–181.
  4. L. R. Dalton, “Nonlinear Optical Polymeric Materials: From Chromophore Design to Commercial Applications” in Polymers for Photonics Applications I, Advances in Polymer Science, K. S. Lee, Ed., Vol. 158 (Springer Berlin/Heidelberg Publisher, 2002), pp. 1–86.
  5. L. R. Dalton, B. H. Robinson, A. K.-Y. Jen, W. H. Steier, and R. Nielsen, “Systematic Development of High Bandwidth, Low Drive Voltage Organic Electrooptic Devices and Their Applications,” Opt. Mater. 21, 19–28 (2003). [CrossRef]
  6. M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, and V. Kokars, “New Figure of Merit for Tailoring Optimal Structure of the Second Order NLO Chromophore for Guest-Host Polymers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 485, 903–914 (2008). [CrossRef]
  7. A. W. Harper, S. S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson, “Translating Microscopic Optical Nonlinearity to Macroscopic Optical Nonlinearity: The Role of Chromophore-Chromophore Electrostatic Interactions,” J. Opt. Soc. Am. B 15, 329–337 (1998). [CrossRef]
  8. B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999). [CrossRef]
  9. I. Rau, P. Armatys, P.-A. Chollet, F. Kajzar, Y. Bretonniere, and C. Andraud, “Aggregation: A new mechanism of relaxation of polar order in electro-optic polymers,” Chem. Phys. Lett. 442, 329–333 (2007). [CrossRef]
  10. G. Pawlik, A. C. Mitus, I. Rau, and F. Kajzar, “Poling of Electro-Optic Materials: Paradigms and Concepts,” Nonl. Opt. Quant. Opt. 40, 57–63 (2010).
  11. A. C. Mitus, G. Pawlik, I. Rau, and F. Kajzar, “Computer Simulations of Poled Guest-Host Systems,” Nonl. Opt. Quant. Opt. 38, 141–162 (2008).
  12. L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999). [CrossRef]
  13. B. H. Robinson, and L. R. Dalton, “Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling Field Interactions in Defining Macroscopic Electrooptic Activity for Organic Chromophore/Polymer Materials,” J. Phys. Chem. A 104, 4785–4795 (2000). [CrossRef]
  14. L. R. Dalton, “Rational Design of Organic Electrooptic Materials,” J. Phys. Condens. Matter 15, R897–R934 (2003). [CrossRef]
  15. H. L. Rommel, and B. H. Robinson, “Orientation of Electro-optic Chromophores under Poling Conditions: A Spheroidal Model,” J. Phys. Chem. C 111, 18765–18777 (2007). [CrossRef]
  16. G. Pawlik, A. C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo Modeling of Chosen Non–Linear Optical Effects for Systems of Guest Molecules in Polymeric and Liquid–Crystal Matrices,” Nonl. Opt. Quant. Opt. 38, 227–244 (2009).
  17. M. Makowska-Janusik, H. Reis, M. G. Papadopoulos, I. Economou, and N. J. Zacharopoulos, “Molecular Dynamics Simulations of Electric Field Poled Nonlinear Optical Chromophores Incorporated in a Polymer Matrix,” J. Phys. Chem. B 108, 588–596 (2004). [CrossRef]
  18. M. R. Leahy-Hoppa, P. D. Cunningham, J. A. French, and L. M. Hayden, “Atomistic Molecular Modeling of the Effect of Chromophore Concentration on the Electro-optic Coefficient in Nonlinear Optical Polymers,” J. Phys. Chem. A 110, 5792–5797 (2006). [CrossRef] [PubMed]
  19. H. Reis H., “M. Makowska-Janusik, and M.G. Papadopoulos, “Nonlinear optical susceptibilities of poled guest–host systems: A computational study,” J. Phys. Chem. B 108, 8931–8940 (2004). [CrossRef]
  20. Y. V. Pereverzev, and O. V. Prezhdo, “Mean-field theory of acentric order of dipolar chromophores in polymeric electro-optic materials,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, 8324–8334 (2000). [CrossRef]
  21. Y. V. Pereverzev, O. V. Prezhdo, and L. R. Dalton, “Mean-field theory of acentric order of chromophores with displaced dipoles,” Chem. Phys. Lett. 340, 328–335 (2001). [CrossRef]
  22. K. Won-Kook, and L. M. Hayden, “Fully atomistic modeling of an electric field poled guest–host nonlinear optical polymer,” J. Chem. Phys. 111, 5212–5222 (1999). [CrossRef]
  23. Y. Tu, Y. Luo, and H. Agren, “Molecular Dynamics Simulations Applied to Electric Field Induced Second Harmonic Generation in Dipolar Chromophore Solutions,” J. Phys. Chem. B 110, 8971–8977 (2006). [CrossRef] [PubMed]
  24. Y. Tu, Q. Zhang, and H. Agren, “Electric field poled polymeric nonlinear optical systems: molecular dynamics simulations of poly(methyl methacrylate) doped with disperse red chromophores,” J. Phys. Chem. B 111, 3591–3598 (2007). [CrossRef] [PubMed]
  25. G. Pawlik, A. C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo kinetic study of chromophore distribution in poled guest–host systems,” Proc. SPIE 6891, 68910A–1 – 68910A–7 (2008).
  26. G. Pawlik, D. Wronski, A. C. Mitus, I. Rau, C. Andraud, and F. Kajzar, “A new mechanism of relaxation in poled guest–host systems: Monte Carlo analysis of aggregation scenario,” Proc. SPIE 6653, 66530J–1 – 66530J–7 (2007).
  27. C. A. Walsh, D. M. Burland, V. Y. Lee, R. D. Miller, B. A. Smith, R. J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993). [CrossRef]
  28. R. R. Barto, C. W. Frank, P. V. Bedworth, R. E. Taylor, W. W. Anderson, S. Ermer, A. K.-Y. Jen, J. D. Luo, H. Ma, H.-Z. Tang, M. Lee, and A. S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566–7577 (2006). [CrossRef]
  29. F. Kajzar, O. Krupka, G. Pawlik, A. Mitus, and I. Rau, “Concentration Variation of Quadratic NLO Susceptibility in PMMA-DR1 Side Chain Polymer,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 522, 180–190 (2010). [CrossRef]
  30. F. Kajzar, A. Jen, and K. S. Lee, “Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics, Polymers for Photonics Applications II: Nonlinear Optical, Photorefractive and Two-Photon Absorption Polymers,” in Advances in Polymer Science, K. S. Lee, and G. Wegner, Eds., Vol. 161 (Springer Verlag, 2003).
  31. A. Priimagi, S. Cattaneo, R. H. A. Ras, S. Valkama, O. Ikkala, and M. Kauranen, “Polymer – Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules,” Chem. Mater. 17, 5798–5802 (2005). [CrossRef]
  32. J. Reyes–Esqueda, and B. Darracq, “J. Garcia – Macedo, M. Canva, M. Blanchard – Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001). [CrossRef]
  33. L. Favaretto, G. Barbarella, I. Rau, F. Kajzar, S. Caria, M. Murgia, and R. Zamboni, “Efficient second harmonic generation from thin films of V-shaped benzo[b]thiophene based molecules,” Opt. Express 17, 2557–2564 (2009). [CrossRef] [PubMed]
  34. P. Oswald, and P. Pieranski, Les cristaix liquides: Concepts et proprits physiques illustrs par des expriences, Vol. 1, p. 51 (Gordon and Breach Science Publishers, Paris, 2000).
  35. A. K. Hamanoue, S. Hirayama, M. Amano, K. Nakajima, T. Nakayama, and H. Teranishi, “Spectroscopic Study of 10-Benzoyl-9-anthrol and Its Anion in Basic Media. An Estimation of Microscopic Polarity of PMMA,” Bull. Chem. Soc. Jpn. 55, 3104–3108 (1982). [CrossRef]
  36. D. Morichere, M. Dumont, Y. Levy, G. Gadret, and F. Kajzar, “Nonlinear properties of poled polymer films: SHG and electrooptic measurements,” Proc. SPIE 1560, 214–225 (1991). [CrossRef]
  37. G. Pawlik, A. C. Mitus, A. Miniewicz, and F. Kajzar, “Monte Carlo simulations of temperature dependence of the kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores,” J. Nonlinear Opt. Phys. Mater. 13, 481–489 (2004). [CrossRef]
  38. R. Metzler, and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep. 339, 1–77 (2000). [CrossRef]
  39. A. Z. Patashinski, and M. A. Ratner, “Orientation relaxation in glassy polymers. II. Dipole-size spectroscopy and short-time kinetics,” J. Chem. Phys. 103, 10779–10789 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited