OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18811–18819

Wide spectral range confocal microscope based on endlessly single-mode fiber

R. Hubbard, Yu. B. Ovchinnikov, J. Hayes, D. J. Richardson, Y. J. Fu, S.D. Lin, P. See, and A.G. Sinclair  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18811-18819 (2010)
http://dx.doi.org/10.1364/OE.18.018811


View Full Text Article

Enhanced HTML    Acrobat PDF (977 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope’s use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.

© 2010 OSA

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(180.1790) Microscopy : Confocal microscopy
(270.5290) Quantum optics : Photon statistics
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Microscopy

History
Original Manuscript: July 13, 2010
Revised Manuscript: August 6, 2010
Manuscript Accepted: August 11, 2010
Published: August 18, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
R. Hubbard, Yu. B. Ovchinnikov, J. Hayes, D. J. Richardson, Y. J. Fu, S.D. Lin, P. See, and A.G. Sinclair, "Wide spectral range confocal microscope based on endlessly single-mode fiber," Opt. Express 18, 18811-18819 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18811


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pawley, Handbook of Biological Confocal Microscopy, Third Edition, (Springer, New York 2005).
  2. C. W. Hoheisel, W. Jacobsen, B. Lüttge, and W. Weiner, “Confocal microscopy: applications in materials science,” Macromol. Mater. Eng. 286(11), 663–668 (2001). [CrossRef]
  3. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007). [CrossRef]
  4. M. Oxborrow and A. G. Sinclair, “Single-photon sources,” Contemp. Phys. 46(3), 173–206 (2005). [CrossRef]
  5. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001). [CrossRef] [PubMed]
  6. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000). [CrossRef] [PubMed]
  7. M. Minsky, “Microscopy Apparatus”, U.S. patent 3,013,467 (1961).
  8. M. R. Harris, “Scanning confocal microscope including a single fiber for transmitting light to and receiving light from an object”, U.S. patent 5,120,953 (1992).
  9. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  10. K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004). [CrossRef] [PubMed]
  11. A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000). [CrossRef]
  12. N. Uzunbajakava and C. Otto, “Combined Raman and continuous-wave-excited two-photon fluorescence cell imaging,” Opt. Lett. 28(21), 2073–2075 (2003). [CrossRef] [PubMed]
  13. A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt Express 17(25), 22351–22357 (2009). [CrossRef]
  14. T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” N. J. Phys. 6, 98 (2004). [CrossRef]
  15. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” N. J. Phys. 6, 89 (2004). [CrossRef]
  16. A. J. Bennett, D. C. Unitt, P. Atkinson, D. A. Ritchie, and A. J. Shields, “High performance single photon sources from photolithographically defined pillar microcavities,” Opt. Express 13(1), 50–55 (2005). [CrossRef] [PubMed]
  17. T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” N. J. Phys. 6, 90 (2004). [CrossRef]
  18. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef] [PubMed]
  19. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, “Improved large-mode-area endlessly single-mode photonic crystal fibers,” Opt. Lett. 28(6), 393–395 (2003). [CrossRef] [PubMed]
  20. W. Denk, D. W. Piston, and W. W. Webb, “Multi-photon molecular excitation in laser-scanning microscopy,” in Handbook of Biological Confocal Microscopy, Third Edition, J.B. Pawley, ed. (Springer, New York 2005).
  21. F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Appl. Opt. 41(15), 2930–2934 (2002). [CrossRef] [PubMed]
  22. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett. 27(17), 1513–1515 (2002). [CrossRef]
  23. K. Carlson Maitland, H.-J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Exp. 14, 8604–8612 (2006).
  24. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003). [CrossRef]
  25. A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008). [CrossRef] [PubMed]
  26. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002). [CrossRef] [PubMed]
  27. P. Stavrinou, Department of Physics, Imperial College London, London SW7 2AZ (personal communication, 2008).
  28. R. P. Mirin, “Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot,” Appl. Phys. Lett. 84(8), 1260–1262 (2004). [CrossRef]
  29. J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001). [CrossRef]
  30. C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited