OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18820–18831

Coupled Fano resonators

Xiaoguang Tu, Landobasa Y. Mario, and Ting Mei  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 18820-18831 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate coupled Fano structures which combine the characteristics of both directly coupled Fabry-Perot cavities (DCFPC) and a side-coupled integrated spaced sequence of resonators (SCISSOR). Asymmetric and symmetric Fano resonances in a single and doubly-coupled Fano unit are analytically derived based on Fabry-Perot approach. It is found that doubly-coupled Fano units show a special asymmetric EIT-like lineshape. This structure shows an index changing sensitivity of 10−6, about two orders higher than that of the single Fano resonator, which is promising for index sensor application. A unique frequency detuning method of EIT like lineshape is also found in the doubly-coupled Fano units. The multiple coupled Fano unit structure demonstrates potentials for applications of tunable optical filter and slow light, whereas for the latter it shows much higher group delay than that of SCISSORS and DCFPC with the same parameters.

© 2010 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

Original Manuscript: April 5, 2010
Revised Manuscript: June 26, 2010
Manuscript Accepted: June 28, 2010
Published: August 19, 2010

Xiaoguang Tu, Landobasa Y. Mario, and Ting Mei, "Coupled Fano resonators," Opt. Express 18, 18820-18831 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, “GaAs microcavity channel-dropping filter based on a race-track resonator,” IEEE. Photon. Technol. Lett. 11(12), 1620–1622 (1999). [CrossRef]
  2. M. Lipson, “Compact electro-optic modulators on a silicon chip,” J. Sel. Top. Quantum. Electron. 12(6), 1520–1526 (2006). [CrossRef]
  3. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef] [PubMed]
  4. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007). [CrossRef]
  5. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002). [CrossRef]
  6. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14(26), 12770–12781 (2006). [CrossRef] [PubMed]
  7. W. Liang, L. Yang, J. K. S. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006). [CrossRef] [PubMed]
  8. D. Alexandropoulos, J. Scheuer, and N. A. Vainos, “Spectral properties of active racetrack semiconductor structure with intracavity reflections,” J. Sel. Top. Quantum. Electron. 15(5), 1420–1426 (2009). [CrossRef]
  9. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004). [CrossRef] [PubMed]
  10. Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an On-Chip all-optical analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]
  11. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003). [CrossRef]
  12. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999). [CrossRef]
  13. O. Weiss and J. Scheuer, “Side coupled adjacent resonators CROW formation of mid-band zero group velocity,” Opt. Express 17(17), 14817–14824 (2009). [CrossRef] [PubMed]
  14. J. E. Heebner, R. W. Boyd, and Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19(4), 722–731 (2002). [CrossRef]
  15. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000). [CrossRef] [PubMed]
  16. Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003). [CrossRef]
  17. H. A. Haus, Waves and Fields in Optoelectronics. (Prentice–Hall, New York, 1984).
  18. M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71(1), 013803 (2005). [CrossRef]
  19. S. F. Mingaleev, A. E. Miroshnichenko, and Y. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express 16(15), 11647–11659 (2008). [CrossRef] [PubMed]
  20. S. Tay, J. Thomas, B. Momeni, M. Askari, A. Adibi, P. J. Hotchkiss, S. C. Jones, S. R. Marder, R. A. Norwood, and N. Peyghambarian, “Planar photonic crystals infiltrated with nanopartical/polymer composites,” Appl. Phys. Lett. 91(22), 221109 (2007). [CrossRef]
  21. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003). [CrossRef]
  22. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator for linear and nonlinear optics,” J. Opt. Soc. B 21(10), 1818–1832 (2004). [CrossRef]
  23. T. Kamalakis and T. Sphicopoulos, “Analytical Expressions for the Resonant Frequencies and Modal fields of Finite Coupled Optical Cavity Chains,” IEEE J. Quantum Electron. 41(11), 1419–1425 (2005). [CrossRef]
  24. Y. M. Landobasa, S. Darmawan, and M. K. Chin, “Matrix Analysis of 2-D Microresonator Lattice Optical Filters,” IEEE J. Quantum Electron. 41(11), 1410–1418 (2005). [CrossRef]
  25. T. Asano, B.-S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q Nanocavities in Two-dimensional Photonic Crystal Slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006). [CrossRef]
  26. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007). [CrossRef] [PubMed]
  27. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65 (2007).
  28. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical delay lines,” J. Opt. Soc. B 21(9), 1665–1673 (2004). [CrossRef]
  29. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited