OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18839–18851

Quantitative FRET measurement by high-speed fluorescence excitation and emission spectrometer

Jing Yuan, Leilei Peng, Brett E. Bouma, and Guillermo J. Tearney  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18839-18851 (2010)
http://dx.doi.org/10.1364/OE.18.018839


View Full Text Article

Enhanced HTML    Acrobat PDF (1070 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Förster resonance energy transfer (FRET) is an important method in studying biochemistry reactions. But quantifying FRET rapidly is difficult to do because of crosstalk between free donor, free acceptor and FRET fluorescent signals when only excitation or emission property of a FRET sample is measured. If FRET is studied with excitation-emission matrix (EEM) measurements, because the fluorescence intensity maxima of donor, acceptor, and FRET emissions occupy different regions within the EEM, FRET fluorescence can be easily separated out by linear unmixing. In this paper, we report a novel high-speed Fourier Fluorescence Excitation Emission spectrometer, which simultaneously measures three projections of EEM from a FRET sample, which are excitation, emission and excitation-emission cross-correlation spectra. We demonstrate that these three EEM projections can be measured and unmixed in approximately 1 ms to provide rapid quantitative FRET in the presence of free donors and acceptors. The system can be utilized to enable real-time biochemistry reaction studies.

© 2010 OSA

OCIS Codes
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:
Spectroscopy

History
Original Manuscript: May 14, 2010
Revised Manuscript: July 11, 2010
Manuscript Accepted: July 15, 2010
Published: August 19, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Jing Yuan, Leilei Peng, Brett E. Bouma, and Guillermo J. Tearney, "Quantitative FRET measurement by high-speed fluorescence excitation and emission spectrometer," Opt. Express 18, 18839-18851 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948). [CrossRef]
  2. J. R. Lakowicz, Principles of fluorescence spectroscopy (Kluwer Academic/Plenum Publishers, 1999).
  3. D. W. Piston and G. J. Kremers, “Fluorescent protein FRET: the good, the bad and the ugly,” Trends Biochem. Sci. 32(9), 407–414 (2007). [CrossRef] [PubMed]
  4. E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol. 10(5), 409–416 (2006). [CrossRef] [PubMed]
  5. C. Berney and G. Danuser, “FRET or no FRET: a Quantitative Comparison,” Biophys. J. 84(6), 3992–4010 (2003). [CrossRef] [PubMed]
  6. B. A. Pollok and R. Heim, “Using GFP in FRET-based applications,” Trends Cell Biol. 9(2), 57–60 (1999). [CrossRef] [PubMed]
  7. A. Miyawaki, “Visualization of the Spatial and Temporal Dynamics of Intracellular Signaling,” Dev. Cell 4(3), 295–305 (2003). [CrossRef] [PubMed]
  8. K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11(5), 573–578 (2001). [CrossRef]
  9. R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods 5(6), 507–516 (2008). [CrossRef] [PubMed]
  10. X. Zhuang, “Single-molecule RNA science,” Annu. Rev. Biophys. Biomol. Struct. 34(1), 399–414 (2005). [CrossRef] [PubMed]
  11. R. Seidel and C. Dekker, “Single-molecule studies of nucleic acid motors,” Curr. Opin. Struct. Biol. 17(1), 80–86 (2007). [CrossRef] [PubMed]
  12. X. Michalet, S. Weiss, and M. Jäger, “Single-Molecule Fluorescence Studies of Protein Folding and Conformational Dynamics,” Chem. Rev. 106(5), 1785–1813 (2006). [CrossRef] [PubMed]
  13. R. D. Smiley and G. G. Hammes, “Single molecule studies of enzyme mechanisms,” Chem. Rev. 106(8), 3080–3094 (2006). [CrossRef] [PubMed]
  14. M. Margittai, J. Widengren, E. Schweinberger, G. F. Schröder, S. Felekyan, E. Haustein, M. König, D. Fasshauer, H. Grubmüller, R. Jahn, and C. A. M. Seidel, “Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15516–15521 (2003). [CrossRef] [PubMed]
  15. E. A. Lipman, B. Schuler, O. Bakajin, and W. A. Eaton, “Single-molecule measurement of protein folding kinetics,” Science 301(5637), 1233–1235 (2003). [CrossRef] [PubMed]
  16. T. Zal and N. R. J. Gascoigne, “Photobleaching-Corrected FRET Efficiency Imaging of Live Cells,” Biophys. J. 86(6), 3923–3939 (2004). [CrossRef] [PubMed]
  17. M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of Calmodulin with Voltage-Gated Ca2+ Channels Revealed by FRET in Single Living Cells,” Neuron 31(6), 973–985 (2001). [CrossRef] [PubMed]
  18. G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, “Quantitative Fluorescence Resonance Energy Transfer Measurements Using Fluorescence Microscopy,” Biophys. J. 74(5), 2702–2713 (1998). [CrossRef] [PubMed]
  19. R. D. Mitra, C. M. Silva, and D. C. Youvan, “Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein,” Gene 173(11 Spec No), 13–17 (1996). [CrossRef] [PubMed]
  20. R. A. Neher and E. Neher, “Applying spectral fingerprinting to the analysis of FRET images,” Microsc. Res. Tech. 64(2), 185–195 (2004). [CrossRef] [PubMed]
  21. Y. Chen, J. P. Mauldin, R. N. Day, and A. Periasamy, “Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions,” J. Microsc. 228(2), 139–152 (2007). [CrossRef] [PubMed]
  22. E. B. Van Munster, G. J. Kremers, M. J. Adjobo-Hermans, and T. W. Gadella., “Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching,” J. Microsc. 218(3), 253–262 (2005). [CrossRef] [PubMed]
  23. A. K. Kenworthy, “Imaging Protein-Protein Interactions Using Fluorescence Resonance Energy Transfer Microscopy,” Methods 24(3), 289–296 (2001). [CrossRef] [PubMed]
  24. V. M. Mekler, A. Z. Averbakh, A. B. Sudarikov, and O. V. Kharitonova, “Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IgM with streptavidin and aggregates of concanavalin A,” J. Photochem. Photobiol. B 40(3), 278–287 (1997). [CrossRef]
  25. G. Valentin, C. Verheggen, T. Piolot, H. Neel, M. Coppey-Moisan, and E. Bertrand, “Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments,” Nat. Methods 2(11), 801 (2005). [CrossRef] [PubMed]
  26. R. M. Clegg, “Fluorescence resonance energy transfer,” Curr. Opin. Biotechnol. 6(1), 103–110 (1995). [CrossRef] [PubMed]
  27. J. Wlodarczyk, A. Woehler, F. Kobe, E. Ponimaskin, A. Zeug, and E. Neher, “Analysis of FRET signals in the presence of free donors and acceptors,” Biophys. J. 94(3), 986–1000 (2008). [CrossRef]
  28. S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J. 95(6), 2976–2988 (2008). [CrossRef] [PubMed]
  29. A. R. Muroski, K. S. Booksh, and M. L. Myrick, “Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 1. Instrumentation and Background Correction,” Anal. Chem. 68(20), 3534–3538 (1996). [CrossRef]
  30. R. A. Zângaro, L. Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis,” Appl. Opt. 35(25), 5211–5219 (1996). [CrossRef] [PubMed]
  31. A. F. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence Excitation Emission Matrices of Human Tissue: A System for in Vivo Measurement and Method of Data Analysis,” Appl. Spectrosc. 53(3), 302–311 (1999). [CrossRef]
  32. M. G. Müller, A. Wax, I. Georgakoudi, R. R. Dasari, and M. S. Feld, “A reflectance spectrofluorimeter for real-time spectral diagnosis of disease,” Rev. Sci. Instrum. 73(11), 3933–3937 (2002). [CrossRef]
  33. A. Muñoz-Losa, C. Curutchet, B. P. Krueger, L. R. Hartsell, and B. Mennucci, “Fretting about FRET: failure of the ideal dipole approximation,” Biophys. J. 96(12), 4779–4788 (2009). [CrossRef] [PubMed]
  34. M. Gouzman, N. Lifshitz, S. Luryi, O. Semyonov, D. Gavrilov, and V. Kuzminskiy, “Excitation-Emission Fluorimeter Based on Linear Interference Filters,” Appl. Opt. 43(15), 3066–3072 (2004). [CrossRef] [PubMed]
  35. C. D. Tran and R. J. Furlan, “Spectrofluorometer based on acousto-optic tunable filters for rapid scanning and multicomponent sample analyses,” Anal. Chem. 65(13), 1675–1681 (1993). [CrossRef] [PubMed]
  36. J. G. Hirschberg, G. Vereb, C. K. Meyer, A. K. Kirsch, E. Kohen, and T. M. Jovin, “Interferometric measurement of fluorescence excitation spectra,” Appl. Opt. 37(10), 1953–1957 (1998). [CrossRef]
  37. L. Peng, J. T. Motz, R. W. Redmond, B. E. Bouma, and G. J. Tearney, “Fourier transform emission lifetime spectrometer,” Opt. Lett. 32(4), 421–423 (2007). [CrossRef] [PubMed]
  38. L. Peng, J. A. Gardecki, B. E. Bouma, and G. J. Tearney, “Fourier fluorescence spectrometer for excitation emission matrix measurement,” Opt. Express 16(14), 10493–10500 (2008). [CrossRef] [PubMed]
  39. A. D. Hoppe, S. L. Shorte, J. A. Swanson, and R. Heintzmann, “Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells,” Biophys. J. 95(1), 400–418 (2008). [CrossRef] [PubMed]
  40. J. G. Hirschberg and E. Kohen, “Pentaferometer: a solid Sagnac interferometer,” Appl. Opt. 38(1), 136–138 (1999). [CrossRef]
  41. P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-rapid-scanning Fourier transform infrared spectrometry,” Vib. Spectrosc. 19(1), 165–176 (1999). [CrossRef]
  42. V. Saptari, Fourier-Transform Spectroscopy Instrumentation Engineering, Tutorial texts in optical engineering (SPIE Press, 3 November 2003), Vol. TT61, p. 118.
  43. X. Liu, M. J. Cobb, and X. Li, “Rapid scanning all-reflective optical delay line for real-time optical coherence tomography,” Opt. Lett. 29(1), 80–82 (2004). [CrossRef] [PubMed]
  44. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited