OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18852–18865

Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers

Pi-Cheng Law and Peter D. Dragic  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18852-18865 (2010)
http://dx.doi.org/10.1364/OE.18.018852


View Full Text Article

Enhanced HTML    Acrobat PDF (2608 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Boron co-doped germanosilicate fibers are investigated via the Brillouin light scattering technique using two wavelengths, 1534nm and 1064nm. Several fibers are investigated, including four drawn from the same preform but at different draw temperatures. The Stokes’ shifts and the Brillouin spectral widths are found to increase with increasing fiber draw temperature. A frequency-squared law has adequately described the wavelength dependence of the Brillouin spectral width of conventional Ge-doped fibers. However, it is found that unlike conventional Ge-doped fibers these fibers do not follow the frequency-squared law. This is explained through a frequency-dependent dynamic viscosity that modifies this law.

© 2010 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2290) Fiber optics and optical communications : Fiber materials
(160.2290) Materials : Fiber materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5890) Nonlinear optics : Scattering, stimulated

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 21, 2010
Revised Manuscript: July 12, 2010
Manuscript Accepted: July 14, 2010
Published: August 19, 2010

Citation
Pi-Cheng Law and Peter D. Dragic, "Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate
optical fibers," Opt. Express 18, 18852-18865 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989). [CrossRef]
  2. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by using Brillouin OTDR,” Proc. SPIE 2360, 142–145 (1994). [CrossRef]
  3. D. Pohl, M. Maier, and W. Kaiser, “Transient and steady-state gain in stimulated Brillouin amplifiers,” IEEE J. Quantum Electron. 4(5), 320–321 (1968). [CrossRef]
  4. Z. Zhu, M. D. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25(1), 201–206 (2007). [CrossRef]
  5. A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000). [CrossRef]
  6. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTHZ3.
  7. M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuA4.
  8. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009). [CrossRef]
  9. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993). [CrossRef]
  10. J. E. Masnik, J. Kieffer, and J. D. Bass, “Structural relaxations in alkali silicate systems by Brillouin light scattering,” J. Am. Ceram. Soc. 76(12), 3073–3080 (1993). [CrossRef]
  11. J. E. Masnik, J. Kieffer, and J. D. Bass, “The complex mechanical modulus as a structural probe: the case of alkali borate liquids and glasses,” J. Chem. Phys. 103(23), 9907–9917 (1995). [CrossRef]
  12. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972). [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995).
  14. C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970). [CrossRef]
  15. T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007). [CrossRef]
  16. A. S. Pine, “Brillouin scattering study of acoustic attenuation in fused quartz,” Phys. Rev. 185(3), 1187–1193 (1969). [CrossRef]
  17. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode fiber characterization,” Electron. Lett. 22, 1101–1113 (1986).
  18. P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009). [CrossRef]
  19. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990). [CrossRef] [PubMed]
  20. C. Headley, J. B. Clayton, W. A. Reed, L. Eskildsen, and P. B. Hansen, “Technique for obtaining a 2.5 dB increase in the stimulated Brillouin scattering threshold of Ge-doped fibers by varying fiber draw tension,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 1997) paper WL25.
  21. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007). [CrossRef]
  22. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004). [CrossRef]
  23. N. Shibata, K. Okamoto, and Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers,” J. Opt. Soc. Am. B 6(6), 1167–1174 (1989). [CrossRef]
  24. J. Kieffer, “Mechanical degradation and viscous dissipation in B2O3.,” Phys. Rev. B Condens. Matter 50(1), 17–29 (1994). [CrossRef] [PubMed]
  25. O. L. Anderson and H. E. Bömmel, “Ultrasonic absorption in fused silica at low temperatures and high frequencies,” J. Am. Ceram. Soc. 38(4), 125–131 (1955). [CrossRef]
  26. D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures,” Phys. Rev. B Condens. Matter 45(6), 2750–2760 (1992). [CrossRef] [PubMed]
  27. J. Hertling, S. Baeßler, S. Rau, G. Kasper, and S. Hunklinger, “Internal friction and hypersonic velocity in vitreous germania under high pressure,” J. Non-Cryst. Solids 226(1-2), 129–137 (1998). [CrossRef]
  28. M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997). [CrossRef]
  29. S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370K) and high hydrostatic pressures (1-250 bars),” Opt. Commun. 219(1-6), 395–410 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited