OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18866–18874

Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm

Xin Gai, Steve Madden, Duk-Yong Choi, Douglas Bulla, and Barry Luther-Davies  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 18866-18874 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have fabricated 630 × 500nm nanowires from Ge11.5As24Se64.5 chalcogenide glass by electron beam lithography (EBL) and inductively coupled plasma (ICP) etching. The loss of the nanowire was measured to be 2.6dB/cm for the fundamental TM mode. The nonlinear coefficient (γ) was determined to be ≈136 ± 7W−1m−1 at 1550nm by both CW four-wave-mixing (FWM) and modeling. Supercontinuum (SC) was produced in an 18mm long nanowire pumped by 1ps pulses with peak power of 25W.

© 2010 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

Original Manuscript: June 15, 2010
Revised Manuscript: August 4, 2010
Manuscript Accepted: August 13, 2010
Published: August 19, 2010

Xin Gai, Steve Madden, Duk-Yong Choi, Douglas Bulla, and Barry Luther-Davies, "Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W-1m-1 at 1550nm," Opt. Express 18, 18866-18874 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Pelusi, V. G . Ta'eed, L. B . Fu, E . Magi, M. R. E . Lamont, S . Madden, D. Y . Choi, D. A. P . Bulla, B . Luther-Davies, and B. J . Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008). [CrossRef]
  2. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008). [CrossRef] [PubMed]
  3. Y. H. Kuo, H. S. Rong, V. Sih, S. B. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14(24), 11721–11726 (2006). [CrossRef] [PubMed]
  4. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). [CrossRef] [PubMed]
  5. F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009). [CrossRef] [PubMed]
  6. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of Broadband Wavelength Conversion at 40 Gb/s in Silicon Waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009). [CrossRef]
  7. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010). [CrossRef]
  8. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010). [CrossRef] [PubMed]
  9. S. Ayotte, H. S. Rong, S. B. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007). [CrossRef] [PubMed]
  10. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008). [CrossRef] [PubMed]
  11. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]
  12. M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009). [CrossRef] [PubMed]
  13. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009). [CrossRef]
  14. M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip,” Opt. Express 17(11), 9314–9322 (2009). [CrossRef] [PubMed]
  15. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008). [CrossRef]
  16. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15(12), 7802–7809 (2007). [CrossRef] [PubMed]
  17. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006). [CrossRef]
  18. T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010). [CrossRef] [PubMed]
  19. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007). [CrossRef] [PubMed]
  20. C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide Glasses with High Nonlinear Optical Properties for Telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001). [CrossRef]
  21. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002). [CrossRef]
  22. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  23. J. T. Gopinath, M. Sojacic, E. P. Ippen, V. N. Fuflyingin, W. A. King, and M. Shurgailn, “Third Order Nonlinearities in Ge-As-Se-based Glasses for Telecommunications Applications,” J. Appl. Phys. 96(11), 6931–6933 (2004). [CrossRef]
  24. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys. (Berl.) 96(3), 615–625 (2009).
  25. J. C. Phillips, “Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys,” J. Non-Cryst. Solids 34(2), 153–181 (1979). [CrossRef]
  26. P. Boolchand, D. G. Georgiev, and B. Goodman, “Discovery of the Intermediate Phase in Chalcogenide Glasses,” J. Optoelectron. Adv. Mater. 3, 703–720 (2001).
  27. K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B Condens. Matter 39(2), 1270–1279 (1989). [CrossRef] [PubMed]
  28. C. C. Wang, “Empirical Relation Between the Linear and the Third Order Nonlinear Optical Susceptibilities,” Phys. Rev. B 2(6), 2045–2048 (1970). [CrossRef]
  29. A. Prasad, “Ge-As-Se chalcogenide glasses for all-optical signal processing” PhD thesis, Australian National University, 2010.
  30. P. Lusse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of Vectorial Mode Fields in Optical Waveguides by a New Finite Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994). [CrossRef]
  31. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express 17(25), 22393–22400 (2009). [CrossRef]
  32. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakata, “Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching,” Opt. Lett. 29(3), 265–267 (2004). [CrossRef] [PubMed]
  33. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  34. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for alloptical signal processing,” Opt. Express 15(10), 5976–5990 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited