OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18906–18911

All-fiber passively mode-locked femtosecond laser using a 45º-tilted fiber grating polarization element

Chengbo Mou, Hua Wang, Brandon G. Bale, Kaiming Zhou, Lin Zhang, and Ian Bennion  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 18906-18911 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1992 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the demonstration of an all-fiber femtosecond erbium doped fiber laser passively mode-locked using a 45ºtilted fiber grating as an in-fiber polarizer in the laser cavity. The laser generates 600 fs pulses with output pulse energies ~1nJ. Since the 45° tilted grating has a broad polarization response, the laser output has shown a tunabilty in wavelength from 1548nm to 1562nm by simply adjusting the polarization controllers in the cavity.

© 2010 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 14, 2010
Revised Manuscript: May 12, 2010
Manuscript Accepted: May 13, 2010
Published: August 20, 2010

Chengbo Mou, Hua Wang, Brandon G. Bale, Kaiming Zhou, Lin Zhang, and Ian Bennion, "All-fiber passively mode-locked femtosecond laser using a 45º-tilted fiber grating polarization element," Opt. Express 18, 18906-18911 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992). [CrossRef]
  2. M. E. Fermann, M. J. Andrejco, Y. Silverberg, and M. L. Stock, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18(11), 894–896 (1993). [CrossRef] [PubMed]
  3. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-Pulse Modelocking in Fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994). [CrossRef]
  4. D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006). [CrossRef]
  5. I. N. Iii, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16(8), 539–541 (1991). [CrossRef] [PubMed]
  6. A. G. Bulushev, E. M. Dianov, and O. G. Okhotnikov, “Passive mode locking of a laser with a nonlinear fiber reflector,” Opt. Lett. 15(17), 968–970 (1990). [CrossRef] [PubMed]
  7. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMS) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]
  8. F. X. Kartner, J. Aus der Au, and U. Keller, “Mode-Locking with Slow and Fast Saturable Absorbers-What’s the Difference,” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998). [CrossRef]
  9. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003). [CrossRef] [PubMed]
  10. 10A. G. Rozhin, S. Youichi, N. Shu, T. Madoka, K. Hiromichi, and A. Yohji, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalchohol mode locker,” Appl. Phys. Lett. 88, 051118 (2006). [CrossRef]
  11. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007). [CrossRef] [PubMed]
  12. S. Fumio, S. Takafumi, N. Masataka, K. Kyoji, and K. Toshikuni, “A passively mode-locked femtosecond soliton fiber laser at 1.5um with a CNT-doped polycarbonate saturable absorber,” Opt. Exp. 26, 21191–21198 (2008).
  13. J. T. Lin and W. A. Gambling, “Polarization effects in fiber lasers: phenomena, theory, and applications,” Proc. SPIE 1373, 42–53 (1991). [CrossRef]
  14. M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “Linearly polarized all-fiber laser using a short section of highly polarizing microstructured fiber,” Laser Phys. Lett. 5(2), 135–138 (2008). [CrossRef]
  15. S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarization-dependent loss (PDL) in tilted fibre Bragg gratings: application of a PDL equalizer,” IEEE Proc. Optoelectron. 149(5-6), 211–216 (2002). [CrossRef]
  16. K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45º tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005). [CrossRef] [PubMed]
  17. C. Mou, K. Zhou, L. Zhang, and I. Bennion, “Charaterization of 45º-tilted fiber grating and its polarization function in fiber ring laser,” J. Opt. Soc. Am. B 26(10), 1905–1911 (2009). [CrossRef]
  18. A. Siegman, Lasers (University Science Books, 1990).
  19. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006). [CrossRef] [PubMed]
  20. A. Chong, W. H. Renninger, and F. Wise, “All-normal-disperion femtosecond fiber laser with pulse energy above 20nJ,” Opt. Lett. 32(16), 2406–2408 (2007). [CrossRef]
  21. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited