OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18945–18959

Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides

Xiao-Yang Zhang, A. Hu, J. Z. Wen, Tong Zhang, Xiao-Jun Xue, Y. Zhou, and W. W. Duley  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18945-18959 (2010)
http://dx.doi.org/10.1364/OE.18.018945


View Full Text Article

Enhanced HTML    Acrobat PDF (1314 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first study of nanoscale integrated photonic devices constructed with semiconductor-insulator-metal strip (SIMS) waveguides for use at telecom wavelengths. These waveguides support hybrid plasmonic modes transmitting through a 5-nm thick insulating region with a normalized intensity of 200-300 μm−2. Their fundamental mode, unique transmission and dispersion properties are consistent with photonic devices for guiding and routing of signals in communication applications. It has been demonstrated using Finite Element Methods (FEM) that the high performance SIMS waveguide can be used to fabricate deep sub-wavelength integrated plasmonic devices such as directional couplers with the ultra short coupling lengths, sharply bent waveguides, and ring resonators having a functional size of ≈1 µm and with low insertion losses and nearly zero radiation losses.

© 2010 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(130.2035) Integrated optics : Dispersion compensation devices
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Integrated Optics

History
Original Manuscript: June 13, 2010
Revised Manuscript: August 11, 2010
Manuscript Accepted: August 12, 2010
Published: August 20, 2010

Citation
Xiao-Yang Zhang, A. Hu, J. Z. Wen, Tong Zhang, Xiao-Jun Xue, Y. Zhou, and W. W. Duley, "Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides," Opt. Express 18, 18945-18959 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18945


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  3. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  4. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  5. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009). [CrossRef] [PubMed]
  6. B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9(10), 3381–3386 (2009). [CrossRef] [PubMed]
  7. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010). [CrossRef]
  8. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef] [PubMed]
  9. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004). [CrossRef]
  10. X. Y. Zhang, A. Hu, T. Zhang, X. J. Xue, J. Z. Wen, and W. W. Duley, “Subwavelength plasmonic waveguides based on ZnO nanowires and nanotubes: A theoretical study of thermo-optical properties,” Appl. Phys. Lett. 96(4), 043109 (2010). [CrossRef]
  11. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  12. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  13. A. Polman, “Applied physics. Plasmonics applied,” Science 322(5903), 868–869 (2008). [CrossRef] [PubMed]
  14. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007). [CrossRef]
  15. Z. Han, V. Van, W. N. Herman, and P.-T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17(15), 12678–12684 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12678 . [CrossRef] [PubMed]
  16. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  17. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  18. R. Salvador, A. Martínez, C. Garía-Meca, R. Ortuño, and J. Martí, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1496–1501 (2008). [CrossRef]
  19. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  20. E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008). [CrossRef] [PubMed]
  21. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009). [CrossRef]
  22. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009). [CrossRef] [PubMed]
  23. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008). [CrossRef] [PubMed]
  24. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008). [CrossRef]
  25. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(9), 093109 (2009). [CrossRef]
  26. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9(10), 3489–3493 (2009). [CrossRef] [PubMed]
  27. Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Commun. 281(20), 5151–5155 (2008). [CrossRef]
  28. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. D. L. Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005). [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  30. J. E. Toney, “Implementation of a paraxial optical propagation method for large photonic devices,” in Proceedings of the COMSOL Conference Boston2009, (unpublished).
  31. R. Wan, F. Liu, X. Tang, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(14), 141104 (2009). [CrossRef]
  32. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010). [CrossRef]
  33. T. Carmon and K. J. Vahala, “Visible continuous emission from a silicamicrophotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007). [CrossRef]
  34. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  35. F. Zhang and J. W. Y. Lit, “Direct-coupling single-mode fiber ring resonator,” J. Opt. Soc. Am. A 5(8), 1347–1355 (1988). [CrossRef]
  36. A. Majkić, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=OE-16-12-8769 . [CrossRef] [PubMed]
  37. D. Goldring, U. Levy, and D. Mendlovic, “Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis,” Opt. Express 15(6), 3156–3168 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3156 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited