OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18968–18974

A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length

Russell J. Barbour, Khodadad N. Dinyari, and Hailin Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18968-18974 (2010)
http://dx.doi.org/10.1364/OE.18.018968


View Full Text Article

Enhanced HTML    Acrobat PDF (1277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the experimental realization of a composite microcavity system, in which negatively-charged nitrogen vacancy (NV) centers in diamond nanopillars couple evanescently to whispering-gallery modes (WGMs) in a deformed, non-axisymmetric silica microsphere. We show that the deformed microsphere can feature an evanescent decay length four times larger than that of a regular silica microsphere. With the enhanced evanescent coupling, WGMs can in principle couple to NV centers that are 100 to 200 nm beneath the diamond pillar surface, providing a promising avenue for exploring evanescently-coupled cavity QED systems of NV centers in ultrahigh purity diamond.

© 2010 OSA

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 25, 2010
Revised Manuscript: July 27, 2010
Manuscript Accepted: July 30, 2010
Published: August 20, 2010

Citation
Russell J. Barbour, Khodadad N. Dinyari, and Hailin Wang, "A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length," Opt. Express 18, 18968-18974 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18968


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326(5950), 267–272 (2009). [CrossRef] [PubMed]
  2. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320(5881), 1326–1329 (2008). [CrossRef] [PubMed]
  3. R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320(5874), 352–355 (2008). [CrossRef] [PubMed]
  4. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007). [CrossRef] [PubMed]
  5. L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science 314(5797), 281–285 (2006). [CrossRef] [PubMed]
  6. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2(6), 408–413 (2006). [CrossRef]
  7. J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys. Condens. Matter 18(21), S807–S824 (2006). [CrossRef]
  8. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006). [CrossRef] [PubMed]
  9. S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8(11), 3911–3915 (2008). [CrossRef] [PubMed]
  10. P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17(10), 8081–8097 (2009). [CrossRef] [PubMed]
  11. M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34(7), 1108–1110 (2009). [CrossRef] [PubMed]
  12. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91(20), 201112 (2007). [CrossRef]
  13. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9(4), 1447–1450 (2009). [CrossRef] [PubMed]
  14. P. E. Barclay, K. M. C. Fu, C. Santori, and R. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95(19), 191115 (2009). [CrossRef]
  15. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16(23), 19136–19145 (2008). [CrossRef]
  16. C. Santori, P. E. Barclay, K. M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79(12), 125313 (2009). [CrossRef]
  17. K.-M. C. Fu, C. Santori, P. E. Barclay, and R. G. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively-charged nitrogen-vacancy centers through selective oxidation,” arXiv:1001.5449.
  18. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press; 6th edition, 1997).
  19. S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91(3), 033902 (2003). [CrossRef] [PubMed]
  20. Y. F. Xiao, C. H. Dong, Z. F. Han, G. C. Guo, and Y. S. Park, “Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses,” Opt. Lett. 32(6), 644–646 (2007). [CrossRef] [PubMed]
  21. Y.-S. Park and H. Wang, “Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation,” Opt. Express 15(25), 16471–16477 (2007). [CrossRef] [PubMed]
  22. A. Mazzei, S. Götzinger, L de. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007). [CrossRef] [PubMed]
  23. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319(5866), 1062–1065 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited