OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18989–18996

Optical properties of planar waveguides on ZnWO4 formed by carbon and helium ion implantation and effects of annealing

Jin-Hua Zhao, Tao Liu, Sha-Sha Guo, Jing Guan, and Xue-Lin Wang  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 18989-18996 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the optical properties of ZnWO4 planar waveguides created by ion implantation, and the effect annealing has on these structures. Planar optical waveguides in ZnWO4 crystals are fabricated by 5.0 MeV carbon ion implantation with a fluence of 1 × 1015 ions/cm2 or 500 keV helium ion implantation with the a fluence of 1 × 1016 ions/cm2. The thermal stability was investigated by 60 minute annealing cycles at different temperatures ranging from 260°C to 550°C in air. The guided modes were measured by a model 2010 prism coupler at wavelengths of 633 nm and 1539 nm. The reflectivity calculation method (RCM) was applied to simulate the refractive index profile in these waveguides. The near-field light intensity profiles were measured using the end-face coupling method. The absorption spectra show that the implantation processes have almost no influence on the visible band absorption.

© 2010 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Optical Devices

Original Manuscript: June 24, 2010
Revised Manuscript: August 8, 2010
Manuscript Accepted: August 9, 2010
Published: August 20, 2010

Jin-Hua Zhao, Tao Liu, Sha-Sha Guo, Jing Guan, and Xue-Lin Wang, "Optical properties of planar waveguides on ZnWO4 formed by carbon and helium ion implantation and effects of annealing," Opt. Express 18, 18989-18996 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992). [CrossRef] [PubMed]
  2. T. Oi, K. Takagi, and T. Fukazawa, “Scintillation study of ZnWO4 single crystals,” Appl. Phys. Lett. 36(4), 278–279 (1980). [CrossRef]
  3. H. Grassmann, H. G. Moser, and E. Lorenz, “Scintillation properties of ZnWO4,” J. Lumin. 33(1), 109–113 (1985). [CrossRef]
  4. W. Kolbe, K. Petermann, and G. Huber, “Broadband emission and laser action of Cr3+ doped zinc tungstate at 1 μm wavelength,” IEEE J. Quantum Electron. 21(10), 1596–1599 (1985). [CrossRef]
  5. V. P. Yu, I. M. Silvestrova, and R. Voszka, “Elastic and acoustic properties of ZnWO4 single crystal,” Phys. Stat. Solidi A 107(1), 161–164 (1988). [CrossRef]
  6. G. Huang, C. Zhang, and Y. Zhu, “ZnWO4 photocatalyst with high activity for degradation of organic contaminants,” J. Alloy. Comp. 432(1-2), 269–276 (2007). [CrossRef]
  7. R. C. Pullar, S. Farrah, and N. M. Alford, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics,” J. Eur. Ceram. Soc. 27(2-3), 1059–1063 (2007). [CrossRef]
  8. M. J. Rodman, P. J. Chandler, and P. D. Townsend, “Ion-implanted optical waveguides in zinc tungstate,” Nucl. Instrum. Meth. B 80–81, 1182–1184 (1993). [CrossRef]
  9. A. R. Phani, M. Passacantando, L. Lozzi, and S. Santucci, “Structural characterization of bulk ZnWO4 prepared by solid state method,” J. Mater. Sci. 35(19), 4879–4883 (2000). [CrossRef]
  10. F. A. Kröger, Some Aspects of the Luminescence of Solids (Elsevier, New York 1948).
  11. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]
  12. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical effects of ion implantation (Cambridge University Press, Cambridge, 1994).
  13. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009). [CrossRef]
  14. D. Kip, S. Aulkemeyer, and P. Moretti, “Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation,” Opt. Lett. 20(11), 1256–1258 (1995). [CrossRef] [PubMed]
  15. Y. Tan and F. Chen, “Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching,” Opt. Express 18(11), 11444–11449 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-11-11444 . [CrossRef] [PubMed]
  16. L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16880 . [CrossRef] [PubMed]
  17. Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009). [CrossRef]
  18. X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005). [CrossRef]
  19. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004). [CrossRef]
  20. J. F. Ziegler, computer code, SRIM, http://www.srim.org .
  21. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).
  22. F. Caccavale, F. Segato, I. Mansour, and M. Gianesin, “A finite differences method for the reconstruction of refractive index profiles from near-field measurements,” J. Lightwave Technol. 16(7), 1348–1353 (1998). [CrossRef]
  23. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15(1), 151–155 (1976). [CrossRef] [PubMed]
  24. P. Hertel and H. P. Menzler, “Improved inverse WKB procedure to reconstruct refractive index profiles of dielectric planar waveguides,” Appl. Phys. B 44(2), 75–80 (1987). [CrossRef]
  25. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001). [CrossRef]
  26. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited