OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18997–19008

Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery

D. L. Yang, H. Gong, E. Y. B. Pun, X. Zhao, and H. Lin  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18997-19008 (2010)
http://dx.doi.org/10.1364/OE.18.018997


View Full Text Article

Enhanced HTML    Acrobat PDF (3392 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In Er3+/Yb3+ codoped Na2O-ZnO-PbO-GeO2-TeO2 (NZPGT) glass fiber, a clear and compact green upconversion amplified spontaneous emission (ASE) trace is observed, and the NZPGT glasses are proved to be a desirable candidate in fabricating low-phonon energy fiber. Intense green upconversion luminescence of Er3+, balanced green and red upconversion emissions of Ho3+, and dominant three-photon blue upconversion fluorescence of Tm3+ have been represented. By varying the excitation power of 974nm wavelength laser diode, a series of green and white fluorescences have been achieved in Tm3+/Er3+/Yb3+ and Tm3+/Ho3+/Yb3+ triply doped glass systems, respectively. These results reveal that high-intensity blue, green, and white upconversion ASE fluorescences, which can be adopted for lighting in minimally invasive photodynamic therapy and minimally invasive surgery, are reasonable to be expected in rare-earth doped NZPGT glass fibers.

© 2010 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Materials

History
Original Manuscript: July 6, 2010
Revised Manuscript: August 16, 2010
Manuscript Accepted: August 17, 2010
Published: August 20, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
D. L. Yang, H. Gong, E. Y. B. Pun, X. Zhao, and H. Lin, "Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery," Opt. Express 18, 18997-19008 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18997


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Serra, M. Pineiro, N. Pereira, A. R. Gonsalves, M. Laranjo, M. Abrantes, and F. Botelho, “A look at clinical applications and developments of photodynamic therapy,” Oncol. Rev. 2(4), 235–249 (2008). [CrossRef]
  2. J. Usuda, H. Kato, T. Okunaka, K. Furukawa, H. Tsutsui, K. Yamada, Y. Suga, H. Honda, Y. Nagatsuka, T. Ohira, M. Tsuboi, and T. Hirano, “Photodynamic therapy (PDT) for lung cancers,” J. Thorac. Oncol. 1(5), 489–493 (2006). [CrossRef]
  3. L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci. 17(3), 173–186 (2002). [CrossRef] [PubMed]
  4. T. Som and B. Karmakar, “Efficient green and red fluorescence upconversion in erbium doped new low phonon antimony glasses,” Opt. Mater. 31(4), 609–618 (2009). [CrossRef]
  5. A. S. Gouveia-Neto, L. A. Bueno, A. C. M. Afonso, J. F. Nascimento, E. B. Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+-codoped fluorogermanate glass and glass ceramic,” J. Non-Cryst. Solids 354(2-9), 509–514 (2008). [CrossRef]
  6. N. K. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li:TeO2 glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 74(5), 1115–1119 (2009). [CrossRef] [PubMed]
  7. D. A. Simpson, W. E. K. Gibbs, S. F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, and G. W. Baxter, “Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation,” Opt. Express 16(18), 13781–13799 (2008). [CrossRef] [PubMed]
  8. B. V. Padlyak, Cz Koepke, D Piatkowski, K Wisniewski, and B Kuklinski, “Excited state absorption and up-conversion luminescence of Ho3+ centers in 3CaO-Ga2O3-3GeO2 glass,” J. Non-Cryst. Solids 355, 1338–1341 (2009). [CrossRef]
  9. D. Deng, S. Xu, S. Zhao, C. Li, H. Wang, and H. Ju, “Enhancement of upconversion luminescence in Tm3+/Er3+/Yb3+-codoped glass ceramic containing LiYF4 nanocrystals,” J. Lumin. 129(11), 1266–1270 (2009). [CrossRef]
  10. R. Balakrishnaiah, D. W. Kim, S. S. Yi, K. D. Kim, S. H. Kim, K. Jang, H. S. Lee, and J. H. Jeong, “Frequency upconversion fluorescence studies of Er3+/Yb3+-codoped KNbO3 phosphors,” Thin Solid Films 517(14), 4138–4142 (2009). [CrossRef]
  11. R. Lisiecki, W. Ryba-Romanowski, A. Speghini, and M. Bettinelli, “Luminescence spectroscopy of Er3+-doped and Er3+, Yb3+-codoped LaPO4 single crystals,” J. Lumin. 129(5), 521–525 (2009). [CrossRef]
  12. E. Garskaite, M. Lindgren, M. Einarsrud, and T. Grande, “Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesized by an aqueous sol-gel technique,” J. Eur. Ceram. Soc. 30(7), 1707–1715 (2010). [CrossRef]
  13. V. K. Komarala, Y. Wang, and M. Xiao, “Nonlinear optical properties of Er3+/Yb3+-doped NaYF4 nanocrystals,” Chem. Phys. Lett. 490(4-6), 189–193 (2010). [CrossRef]
  14. H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009). [CrossRef]
  15. R. Balda, R. I. Merino, J. I. Pena, V. M. Orera, M. A. Arriandiaga, and J. Fernandez, “Spectroscopic properties and frequency upconversion of Er3+-doped 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Mater. 31(7), 1105–1108 (2009). [CrossRef]
  16. E. De la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodriguez, “Strong green upconversion emission in ZrO2: Yb3+-Ho3+ nanocrystals,” Appl. Phys. Lett. 87(24), 241912 (2005). [CrossRef]
  17. C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-co-doped glasses,” Opt. Express 15(15), 9232–9238 (2007). [CrossRef] [PubMed]
  18. K. Zhang, F. Song, J. Su, L. Han, J. Liang, X. Zhang, L. Yan, J. Tian, and J. Xu, “Three-photon indirect sensitization in green upconversion luminescence of Er/Tm codoped NaY(WO4)2 crystal,” Opt. Express 14(26), 12584–12589 (2006). [CrossRef] [PubMed]
  19. S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77(4), 483–485 (2000). [CrossRef]
  20. F. Lahoz, “Ho3+-doped nanophase glass ceramics for efficiency enhancement in silicon solar cells,” Opt. Lett. 33(24), 2982–2984 (2008). [CrossRef] [PubMed]
  21. N. Rakov, G. S. Maciel, C. B. de Araujo, and Y. Messaddeq, “Energy transfer frequency upconversion in Ho3+ doped fluoroindate glass,” J. Appl. Phys. 91(3), 1272–1275 (2002). [CrossRef]
  22. A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, and E. Osiac, “Upconversion emission of RE3+ in Sc2O3 ceramic under 800nm pumping,” Opt. Mater. 31(5), 744–749 (2009). [CrossRef]
  23. Z. Yu, Q. Yang, C. Xu, and Y. Liu, “Upconversion white-light emitting of Tm3+ and Er3+ codoped oxyfluoride and its achieving mechanism,” Mater. Res. Bull. 44(7), 1576–1580 (2009). [CrossRef]
  24. Z. Duan, J. Zhang, W. Xiang, H. Sun, and L. Hu, “Multicolor upconversion of Er3+/Tm3+/Yb3+ doped oxyfluoride glass ceramics,” Mater. Lett. 61(11-12), 2200–2203 (2007). [CrossRef]
  25. C. Liu and J. Heo, “Generation of white light from oxy-fluoride nano-glass doped with Ho3+, Tm3+ and Yb3+,” Mater. Lett. 61(17), 3751–3754 (2007). [CrossRef]
  26. H. Gong, D. L. Yang, X. Zhao, E. Y. B. Pun, and H. Lin, “Upconversion color tunability and white light generation in Tm3+/Ho3+/Yb3+ doped aluminum germanate glasses,” Opt. Mater. 32(4), 554–559 (2010). [CrossRef]
  27. A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007). [CrossRef]
  28. N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91(3-4), 437–441 (2008). [CrossRef]
  29. L. X. Sun, H. Gong, B. J. Chen, H. Lin, and E. Y. B. Pun, “Multicolor upconversion and color tunability in Tm3+/Ho3+/Yb3+ doped opaque aluminum tellurite ceramics,” J. Appl. Phys. 105(10), 106109 (2009). [CrossRef]
  30. J. E. C. da Silva, G. F. de Sa, and P. A. Santa-Cruz, “White light simulation by upconversion in fluoride glass host,” J. Alloy. Comp. 344(1-2), 260–263 (2002). [CrossRef]
  31. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000). [CrossRef]
  32. F. Lahoz, I. R. Martin, and A. Briones, “Infrared-laser induced photon avalanche upconversion in Ho3+-Yb3+ codoped fluoroindate glasses,” J. Appl. Phys. 95(6), 2957–2962 (2004). [CrossRef]
  33. G. A. Kumar, A. Martinez, E. Mejia, and J. G. Eden, “Fluorescence and upconversion spectral studies of Ho3+ in alkali bismuth gallate glasses,” J. Alloy. Comp. 365(1-2), 117–120 (2004). [CrossRef]
  34. X. Zou and H. Toratani, “Dynamics and mechanisms of up-conversion processes in Yb3+ sensitized Tm3+- and Ho3+-doped fluorozircoaluminate glasses,” J. Non-Cryst. Solids 181(1-2), 87–99 (1995). [CrossRef]
  35. C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses-A review,” J. Non-Cryst. Solids 352(32-35), 3582–3597 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited