OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19020–19031

Extreme non-linear elasticity and transformation optics

Allan Roulund Gersborg and Ole Sigmund  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 19020-19031 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transformation optics is a powerful concept for designing novel optical components such as high transmission waveguides and cloaking devices. The selection of specific transformations is a non-unique problem. Here we reveal that transformations which allow for all dielectric and broadband optical realizations correspond to minimizers of elastic energy potentials for extreme values of the mechanical Poisson’s ratio ν. For TE (Hz ) polarized light an incompressible transformation ν = 1 2 is ideal and for TM (Ez ) polarized light one should use a compressible transformation with negative Poissons’s ratio ν = −1. For the TM polarization the mechanical analogy corresponds to a modified Liao functional known from the transformation optics literature. Finally, the analogy between ideal transformations and solid mechanical material models automates and broadens the concept of transformation optics.

© 2010 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(130.0130) Integrated optics : Integrated optics
(160.4760) Materials : Optical properties
(230.0230) Optical devices : Optical devices
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: January 29, 2010
Revised Manuscript: June 10, 2010
Manuscript Accepted: August 11, 2010
Published: August 23, 2010

Allan R. Gersborg and Ole Sigmund, "Extreme non-linear elasticity and transformation optics," Opt. Express 18, 19020-19031 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Ward, and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996). [CrossRef]
  2. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006). [CrossRef] [PubMed]
  3. . U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247–1 – 247–18 (2006). [CrossRef]
  4. U. Leonhardt, “Optical Conformal Mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006). [CrossRef]
  7. . J. B. Pendry, “Taking the wraps off cloaking,” Physics 2, 95–1 – 95–62009. [CrossRef]
  8. . M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry and D. R. Smith, “Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations,” Phys. Rev. Lett. 100, 063903–1 – 063903–4 (2008). [CrossRef]
  9. . D. A. Roberts, M. Rahm, J. B. Pendry and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93, 251111–1 – 251111–3 (2008). [CrossRef]
  10. M. Rahm, D. R. Smith, and D. A. Schurig, “Transformation-optical design of reconfigurable optical devices, Patent application publication no.: US 2009/0147342 A1, 14 pages, http://www.freepatentsonline.com/y2009/0147342.html (2009).
  11. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008). [CrossRef] [PubMed]
  12. . J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett. 101, 203901–1 – 203901–4 (2008). [CrossRef]
  13. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  14. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009). [CrossRef] [PubMed]
  15. . H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105–1 – 241105–3 (2007).
  16. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6(1), 87–95 (2008). [CrossRef]
  17. N. I. Landy, and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009). [CrossRef] [PubMed]
  18. P. M. Knupp, and S. Steinberg, Fundamentals of Grid Generation (CRC-Press, 1993, ISBN 978–0849–38987–0).
  19. J. Hu, X. Zhou, and G. Hu, “A numerical method for designing acoustic cloak with arbitrary shapes,” Comput. Mater. Sci. 46(3), 708–712 (2009). [CrossRef]
  20. R. Lakes, “Foam Structures with a Negative Poisson’s Ratio,” Science 235(4792), 1038–1040 (1987). [CrossRef] [PubMed]
  21. O. Sigmund, “Materials with prescribed constitutive parameters: an inverse homogenization problem,” Int. J. Solids Struct. 31(17), 2313–2329 (1994). [CrossRef]
  22. U. D. Larsen, O. Sigmund, and S. Bouwstra, “Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio,” J. Micromech. Syst. 6(2), 99–106 (1997). [CrossRef]
  23. O. Sigmund, “A new class of extremal composites,” J. Mech. Phys. Solids 48(2), 397–428 (2000). [CrossRef]
  24. G. W. Minton, The Theory of Composites, (Cambridge University Press, Cambridge, 2002).
  25. . G.W. Milton, M. Briane and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8, 248–1 – 248–20 (2006). [CrossRef]
  26. . M. Farhat, S. Guenneau, S. Enoch and A. B. Movchan, “Cloaking bending waves propagating in thin elastic plates,” Phys. Rev. 79, 033102–1 – 033102–4 (2009).
  27. . M. Brun, S. Guenneau and A. B. Movchan, “Achieving control of in-plane elastic waves,” Appl. Phys. Lett. 94, 061903–1 – 061903–3 (2009). [CrossRef]
  28. T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures, (Wiley, Chichester, 2001).
  29. O. C. Zienkiewicz, and R. L. Taylor, The Finite Element Method, vol 2., 5th edition, (Butterworth Heinemann, Oxford, 2000).
  30. B. Hassani, and E. Hinton, “A review of homogenization and topology optimization I-homogenization theory for media with periodic structure,” Comput. Struc. 69(6), 707–717 (1998). [CrossRef]
  31. S. Torquato, Random Heterogeneous Materials, (Springer, New York, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited