OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19032–19038

Excitation of multiple dipole surface plasmon resonances in spherical silver nanoparticles

Bjoern Niesen, Barry P. Rand, Pol Van Dorpe, Honghui Shen, Bjorn Maes, Jan Genoe, and Paul Heremans  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 19032-19038 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe the appearance of multiple dipole surface plasmon resonances in spherical Ag nanoparticles when embedded in an organic semiconductor that exhibits a highly dispersive permittivity. Comparing the absorption spectra of thin-films with and without Ag nanoparticles reveals the presence of two plasmon peaks. Numerical simulations and calculations based on an electrostatic model allow us to attribute both peaks to dipole resonances, and show that the strong dispersion of the organic permittivity is responsible for this behavior. The presence of these two plasmon resonances was found to enhance the absorption of the organic semiconductor over a broad wavelength range.

© 2010 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties
(350.4990) Other areas of optics : Particles
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

Original Manuscript: May 28, 2010
Revised Manuscript: July 14, 2010
Manuscript Accepted: August 11, 2010
Published: August 23, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Bjoern Niesen, Barry P. Rand, Pol Van Dorpe, Honghui Shen, Bjorn Maes, Jan Genoe, and Paul Heremans, "Excitation of multiple dipole surface plasmon resonances in spherical silver nanoparticles," Opt. Express 18, 19032-19038 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007). [CrossRef]
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  3. D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004). [CrossRef]
  4. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  5. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003). [CrossRef]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  7. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004). [CrossRef] [PubMed]
  8. H. Haick, “Chemical sensors based on molecularly modified metallic nanoparticles,” J. Phys. D Appl. Phys. 40(23), 7173–7186 (2007). [CrossRef]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  10. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008). [CrossRef]
  11. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004). [CrossRef]
  12. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008). [CrossRef]
  13. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009). [CrossRef]
  14. S. A. Choulis, M. K. Mathai, and V.-E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88(21), 213503 (2006). [CrossRef]
  15. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008). [CrossRef]
  16. S. Schlücker, “SERS microscopy: nanoparticle probes and biomedical applications,” ChemPhysChem 10(9-10), 1344–1354 (2009). [CrossRef] [PubMed]
  17. X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009). [CrossRef] [PubMed]
  18. U. Kreibig, and M. Vollmer, Optical properties of metal clusters, Springer Series in Materials Science (Springer-Verlag, 1995).
  19. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-Interscience, 1983).
  20. K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” J. Am. Chem. Soc. 128(25), 8108–8109 (2006). [CrossRef] [PubMed]
  21. H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater. 17(15), 2653–2658 (2007). [CrossRef]
  22. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008). [CrossRef] [PubMed]
  23. A A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006). [CrossRef] [PubMed]
  24. G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009). [CrossRef] [PubMed]
  25. P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, “Optical absorbance of silver oblate particles - Substrate and shape effects,” Surf. Sci. 217(1-2), 384–402 (1989). [CrossRef]
  26. U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B Condens. Matter 36(9), 5027–5030 (1987). [CrossRef] [PubMed]
  27. K. Tanabe, “Field enhancement around metal nanoparticles and nanoshells: a systematic investigation,” J. Phys. Chem. C 112(40), 15721–15728 (2008). [CrossRef]
  28. J. B. Khurgin and G. Sun, “Enhancement of optical properties of nanoscaled objects by metal nanoparticles,” J. Opt. Soc. Am. B 26(12), B83–B95 (2009). [CrossRef]
  29. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009). [CrossRef]
  30. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010). [CrossRef] [PubMed]
  31. B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Prog. Photovolt. Res. Appl. 15(8), 659–676 (2007). [CrossRef]
  32. B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed. Engl. 47(1), 58–77 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited