OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19039–19054

Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems

Xi Chen and William Shieh  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19039-19054 (2010)
http://dx.doi.org/10.1364/OE.18.019039


View Full Text Article

Enhanced HTML    Acrobat PDF (1262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There has been a trend of migration to high spectral efficiency transmission in optical fiber communications for which the frequency guard band between neighboring wavelength channels continues to shrink. In this paper, we derive closed-form analytical expressions for nonlinear system performance of densely spaced coherent optical OFDM (CO-OFDM) systems. The closed-form solutions include the results for the achievable Q factor, optimum launch power density, nonlinear threshold of launch power density, and information spectral efficiency limit. These analytical results clearly identify their dependence on system parameters including fiber dispersion, number of spans, dispersion compensation ratio, and overall bandwidth. The closed-form solution is further substantiated by numerical simulations using distributed nonlinear Schrödinger equation.

© 2010 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 10, 2010
Revised Manuscript: August 6, 2010
Manuscript Accepted: August 7, 2010
Published: August 23, 2010

Citation
Xi Chen and William Shieh, "Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems," Opt. Express 18, 19039-19054 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19039


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006). [CrossRef]
  2. E. Yamada, A. Sano, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, K. Yonenaga, Y. Miyamoto, K. Ishihara, Y. Takatori, T. Yamada, and H. Yamazaki, “1Tb/s (111Gb/s/ch × 10ch) no-guard-interval CO-OFDM transmission over 2100 km DSF,” Opto-Electronics Communications Conference/Australian Conference on Optical Fiber Technology, paper PDP6, Sydney, Australia (2008).
  3. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17, 9421–9427 (2009). [CrossRef] [PubMed]
  4. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” Eur. Conf. Optical Commun.,Vienna, Austria (2009), post-deadline Paper PD2.6.
  5. G. Goldfarb, G. F. Li, and M. G. Taylor, “Orthogonal wavelength-division multiplexing using coherent detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007). [CrossRef]
  6. R. Dischler, and F. Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” Optical Fiber Communication Conference, paper PDP C2, San Diego, USA (2009).
  7. H. Takahashi, A. Al Amin, S. L. Jansen, I. Morita, and H. Tanaka, “Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8 x 65.1-Gb/s coherent PDM-OFDM,” J. Lightwave Technol. 28(4), 406–414 (2010). [CrossRef]
  8. A. J. Lowery, S. Wang, and M. Premaratne, “Calculation of power limit due to fiber nonlinearity in optical OFDM systems,” Opt. Express 15(20), 13282–13287 (2007). [CrossRef] [PubMed]
  9. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express 16(20), 15777–15810 (2008). [CrossRef] [PubMed]
  10. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008). [CrossRef] [PubMed]
  11. X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009). [CrossRef]
  12. M. Mayrock and H. Haunstein, “Monitoring of linear and nonlinear signal distortion in coherent optical OFDM transmission,” J. Lightwave Technol. 27(16), 3560–3566 (2009). [CrossRef]
  13. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001). [CrossRef] [PubMed]
  14. K. Inoue, “Phase-mismatching characteristic of four-wave mixing in fiber lines with multistage optical amplifiers,” Opt. Lett. 17(11), 801–803 (1992). [CrossRef] [PubMed]
  15. R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “Four-photon mixing and high-speed WDM systems,” J. Lightwave Technol. 13(5), 841–849 (1995). [CrossRef]
  16. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008). [CrossRef] [PubMed]
  17. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited