OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19055–19063

Highly-efficient thermally-tuned resonant optical filters

John E. Cunningham, Ivan Shubin, Xuezhe Zheng, Thierry Pinguet, Attila Mekis, Ying Luo, Hiren Thacker, Guoliang Li, Jin Yao, Kannan Raj, and Ashok V. Krishnamoorthy  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19055-19063 (2010)
http://dx.doi.org/10.1364/OE.18.019055


View Full Text Article

Enhanced HTML    Acrobat PDF (1412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate spectral tunability for microphotonic add-drop filters manufactured as ring resonators in a commercial 130 nm SOI CMOS technology. The filters are provisioned with integrated heaters built in CMOS for thermal tuning. Their thermal impedance has been dramatically increased by the selective removal of the SOI handler substrate under the device footprint using a bulk silicon micromachining process. An overall ~20x increase in the tuning efficiency has been demonstrated with a 100 µm radius ring as compared to a pre-micromachined device. A total of 3.9 mW of applied tuning power shifts the filter resonant peak across one free spectral node of the device. The Q-factor of the resonator remains unchanged after the co-integration process and hence this device geometry proves to be fully CMOS compatible. Additionally, after the cointegration process our result of 2π shift with 3.9mW power is among the best tuning performances for this class of devices. Finally, we examine scaling the tuning efficiency versus device footprint to develop a different performance criterion for an easier comparison to evaluate thermal tuning. Our criterion is defined as the unit of power to shift the device resonance by a full 2π phase shift.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.5990) Integrated optics : Semiconductors
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 16, 2010
Revised Manuscript: August 16, 2010
Manuscript Accepted: August 16, 2010
Published: August 23, 2010

Citation
John E. Cunningham, Ivan Shubin, Xuezhe Zheng, Thierry Pinguet, Attila Mekis, Ying Luo, Hiren Thacker, Guoliang Li, Jin Yao, Kannan Raj, and Ashok V. Krishnamoorthy, "Highly-efficient thermally-tuned resonant optical filters," Opt. Express 18, 19055-19063 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19055


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009). [CrossRef]
  2. J. E. Cunningham, A. V. Krishnamoorthy, I. Shubin, X. Zheng, M. Asghari, D. Feng, and J. G. Mitchell, “Aligning Chips Face-to-Face for Dense Capacitive and Optical Communication,” IEEE Trans. Adv. Packag. 33(2), 389–397 (2010). [CrossRef]
  3. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  4. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006). [CrossRef]
  5. A. Narasimha, B. Analui, L. Liang, T. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A Fully Integrated 4 10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13 μm CMOS SOI Technology,” IEEE J. Solid-state Circuits 42(12), 2736–2744 (2007). [CrossRef]
  6. X. Zheng, P. Koka, H. Schwetman, J. Lexau, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Silicon photonic WDM point-to-point network for multi-chip processor interconnects”, Proceedings of the 5th International Conference on Group IV Photonics, FB7, 380–382 (2008).
  7. I. Christiaens, D. Van Thourhout, and R. Baets, “Low-power thermo-optic tuning of vertically coupled microring resonators,” Electron. Lett. 40(9), 560–561 (2004). [CrossRef]
  8. F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures,” IEEE Photon. Switching 67–68 (2007). [CrossRef]
  9. X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010). [CrossRef] [PubMed]
  10. M. H. Khan, H. Shen, Y. Xuan, S. Xiao, and M. Qi, “Eight-Channel Microring Resonator Array with Accurately Controlled Channel Spacing”, CLEO/QELS (2008).
  11. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics”, 2009 Conference on Lasers and Electro-Optics CLEO/QELS, CPDB10 (2009).
  12. I. Shubin, “X. Zheng, H. Thacker, J. Yao, J. Costa, Y. Luo, G. Li, A. V. Krishnamoorthy, J.E. Cunningham, T. Pinguet, A. Mekis, “Thermally tunable SOI CMOS photonics circuits,” Proc. SPIE 7607, 76070C (2010). [CrossRef]
  13. S. Sridaran and S. A. Bhave, “Nanophotonic devices on thin buried oxide Silicon-On-Insulator substrates,” Opt. Express 18(4), 3850–3857 (2010). [CrossRef] [PubMed]
  14. P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010). [CrossRef] [PubMed]
  15. J. Orcutt, A. Khilo, M. Popovic, C. Holzwarth, B. Moss, H. Li, M. Dahlem, T. Bonifield, F. Kaertner, E. Ippen, J. Hoyt, R. Ram, and V. Stojanovic, “Demonstration of an Electronic Photonic Integrated Circuit in a Commercial Scaled Bulk CMOS Process,” 2008 Conference on Lasers and Electro-Optics CLEO/QELS, CTuBB3 (2008).
  16. C. Holzwarth, J. Orcutt, H. Li, M. Popovic, V. Stojanovic, J. Hoyt, R. Ram, and H. Smith, “Localized Substrate Removal Technique Enabling Strong-Confinement Microphotonics in Bulk Si CMOS Processes,” 2008 Conference on Lasers and Electro-Optics CLEO/QELS, CThKK5 (2009).
  17. N. H. Tea, V. Milanovic, C. Zincke, J. S. Suehle, M. Gaitan, M. E. Zaghloul, and J. Geist, “Hybrid Postprocessing Etching for CMOS-Compatible MEMS,” J. Microelectromech. Syst. 6(4), 363–372 (1997). [CrossRef]
  18. http://www.brewerscience.com/products/protek/wet-etch-protective-coating/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited