OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19101–19113

Nonlinear optical properties of induced transmission filters

Daniel T. Owens, Canek Fuentes-Hernandez, Joel M. Hales, Joseph W. Perry, and Bernard Kippelen  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19101-19113 (2010)
http://dx.doi.org/10.1364/OE.18.019101


View Full Text Article

Enhanced HTML    Acrobat PDF (3012 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The nonlinear optical (NLO) properties of induced transmission filters (ITFs) based on Ag are experimentally determined using white light continuum pump-probe measurements. The experimental results are supported using simulations based on the matrix transfer method. The magnitude of the NLO response is shown to be 30 times that of an isolated Ag film of comparable thickness. The impacts of design variations on the linear and NLO response are simulated. It is shown that the design can be modified to enhance the NLO response of an ITF by a factor of 2 or more over a perfectly matched ITF structure.

© 2010 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 13, 2010
Revised Manuscript: August 12, 2010
Manuscript Accepted: August 14, 2010
Published: August 24, 2010

Citation
Daniel T. Owens, Canek Fuentes-Hernandez, Joel M. Hales, Joseph W. Perry, and Bernard Kippelen, "Nonlinear optical properties of induced transmission filters," Opt. Express 18, 19101-19113 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19101


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10(10), 511–513 (1985). [CrossRef] [PubMed]
  2. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass - copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994). [CrossRef]
  3. H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65(4-5), 673–676 (1997). [CrossRef]
  4. X. Zhang, H. Fang, S. Tang, and W. Ji, “Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique,” Appl. Phys. B 65(4-5), 549–554 (1997). [CrossRef]
  5. X. J. Zhang, W. Ji, and S. H. Tang, “Determination of optical nonlinearities and carrier lifetime in ZnO,” J. Opt. Soc. Am. B 14(8), 1951–1955 (1997). [CrossRef]
  6. J. H. Bechtel and W. L. Smith, “2-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976). [CrossRef]
  7. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 2003).
  8. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal- dielectric photonic bandgap structures,” Opt. Lett. 24(20), 1416–1418 (1999). [CrossRef]
  9. M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016603 (2006). [CrossRef] [PubMed]
  10. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and M. Scalora, “Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036605 (2006). [CrossRef] [PubMed]
  11. T. K. Lee, A. D. Bristow, J. Hubner, and H. M. van Driel, “Linear and nonlinear optical properties of Au-polymer metallodielectric Bragg stacks,” J. Opt. Soc. Am. B 23(10), 2142–2147 (2006). [CrossRef]
  12. G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007). [CrossRef]
  13. G. H. Ma and S. H. Tang, “Ultrafast optical nonlinearity enhancement in metallodielectric multilayer stacks,” Opt. Lett. 32(23), 3435–3437 (2007). [CrossRef] [PubMed]
  14. T. Ergin, T. Benkert, H. Giessen, and M. Lippitz, “Ultrafast time-resolved spectroscopy of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. B 79, 245134 (2009). [CrossRef]
  15. A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007). [CrossRef] [PubMed]
  16. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47(3), 230–239 (1957). [CrossRef]
  17. H. A. Macleod, Thin-film optical filters (Institute of Physics Publishing, Philadelphia, PA, 2001).
  18. G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34(5), 578–580 (2009). [CrossRef] [PubMed]
  19. P. W. Milonni, and J. H. Eberly, Lasers (John Wiley & Sons, USA, 1988).
  20. D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107(12), 123114 (2010). [CrossRef]
  21. G. L. Eesley, “Observation of non-equilibrium electron heating in copper,” Phys. Rev. Lett. 51(23), 2140–2143 (1983). [CrossRef]
  22. H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987). [CrossRef] [PubMed]
  23. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58(16), 1680–1683 (1987). [CrossRef] [PubMed]
  24. S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990). [CrossRef] [PubMed]
  25. T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994). [CrossRef]
  26. T. S. Ahmadi, S. L. Logunov, and M. A. ElSayed, “Picosecond dynamics of colloidal gold nanoparticles,” J. Phys. Chem. 100(20), 8053–8056 (1996). [CrossRef]
  27. Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited