OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19156–19162

Tunable Optical Time Delay of Quantum Signals Using a Prism Pair

George M. Gehring, Heedeuk Shin, Robert W. Boyd, Chil-Min Kim, and Byoung S. Ham  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19156-19162 (2010)
http://dx.doi.org/10.1364/OE.18.019156


View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a compact, tunable, optical time-delay module that functions by means of total internal reflection within two glass prisms. The delay is controlled by small mechanical motions of the prisms. The device is inherently extremely broad band, unlike time delay modules based on “slow light” methods. In the prototype device that we fabricated, we obtain time delays as large as 1.45 ns in a device of linear dimensions of the order of 3.6 cm. We have delayed pulses with a full width at half-maximum pulse duration of 25 fs, implying a delay bandwidth product (measured in delay time divided by the FWHM pulse width) of 5.8x104. We also show that the dispersion properties of this device are sufficiently small that quantum features of a light pulse are preserved upon delay.

© 2010 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:
Quantum Optics

History
Original Manuscript: June 11, 2010
Revised Manuscript: August 13, 2010
Manuscript Accepted: August 18, 2010
Published: August 25, 2010

Citation
George M. Gehring, Heedeuk Shin, Robert W. Boyd, Chil-Min Kim, and Byoung S. Ham, "Tunable optical time delay of quantum signals using a prism pair," Opt. Express 18, 19156-19162 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19156


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: Capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005). [CrossRef]
  2. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009). [CrossRef] [PubMed]
  3. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32(5), 285–288 (1942). [CrossRef]
  4. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4(8), 883–889 (1965). [CrossRef]
  5. D. B. Sarrazin, H. F. Jordan, and V. P. Heuring, “Fiber optic delay line memory,” Appl. Opt. 29(5), 627–637 (1990). [CrossRef] [PubMed]
  6. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  7. M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999). [CrossRef]
  8. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001). [CrossRef] [PubMed]
  9. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  10. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]
  11. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]
  12. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001). [CrossRef]
  13. J. Hahn and B. S. Ham, “Observations of self-induced ultraslow light in a persistent spectral hole burning medium,” Opt. Express 16(21), 16723–16728 (2008). [CrossRef] [PubMed]
  14. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003). [CrossRef] [PubMed]
  15. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005). [CrossRef] [PubMed]
  16. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98(15), 153601 (2007). [CrossRef] [PubMed]
  17. J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997). [CrossRef]
  18. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited