OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19219–19231

In situ and real time monitoring of two-photon polymerization using broadband coherent anti-Stokes Raman scattering microscopy

Tommaso Baldacchini and Ruben Zadoyan  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 19219-19231 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1542 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate in situ and real time characterization of two-photon polymerization (TPP) by means of broadband coherent anti-Stokes Raman scattering (CARS) microscopy. The same experimental setup based on one femtosecond oscillator is used to perform both TPP and broadband CARS microscopy. We performed in situ imaging with chemical specificity of three-dimensional microstructures fabricated by TPP, and successfully followed the writing process in real time. Broadband CARS microscopy allowed discerning between polymerized and unpolymerized material. Imaging with good vibrational contrast is achieved without causing any damage to the microstructures or undesired polymerization within the sample.

© 2010 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(350.3390) Other areas of optics : Laser materials processing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Laser Microfabrication

Original Manuscript: July 23, 2010
Revised Manuscript: August 22, 2010
Manuscript Accepted: August 23, 2010
Published: August 25, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Tommaso Baldacchini and Ruben Zadoyan, "In situ and real time monitoring of two-photon polymerization using broadband coherent anti-Stokes Raman scattering microscopy," Opt. Express 18, 19219-19231 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007). [CrossRef] [PubMed]
  2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004). [CrossRef] [PubMed]
  3. R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006). [CrossRef] [PubMed]
  4. S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007). [CrossRef]
  5. S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003). [CrossRef]
  6. P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. 20(23), 4494–4498 (2008). [CrossRef]
  7. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-Dimensional Structuring of Resists and Resins by Direct Laser Writing and Holographic Recording,” Adv. Polym. Sci. 213, 157–206 (2008).
  8. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010). [CrossRef] [PubMed]
  9. S. O. Onuh and K. K. B. Hon, ““An esperimental investigation into the effect of hatch pattern in stereolithography,” CIRP Annals - Manuf Tech. 47(1), 157–160 (1998). [CrossRef]
  10. S. O. Onuh and K. K. B. Hon, “Improving stereolithography part accuracy for industrial applications,” Int. J. Adv. Manuf. Technol. 17(1), 61–68 (2001). [CrossRef]
  11. Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20(3), 035004 (2010). [CrossRef]
  12. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007). [CrossRef] [PubMed]
  13. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009). [CrossRef] [PubMed]
  14. S. Nakanishi, S. Shoji, S. Kawata, and H. B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys. Lett. 91(6), 063112 (2007). [CrossRef]
  15. S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008). [CrossRef] [PubMed]
  16. R. Zadoyan, T. Baldacchini, M. Karavitis, and J. Carter, “CARS microspectrometer with a suppressed nonresonant background,” Ultrafast Phenomena XVI, Springer Series in Chemical Physics 92, 997–999 (2009). [CrossRef]
  17. T. Baldacchini, M. Zimmerley, E. O. Potma, and R. Zadoyan, “Chemical mapping of three-dimensional microstructures fabricated by two-photon polymerization using CARS microscopy,” Proc. SPIE 7201, 72010Q72011 (2009). [CrossRef]
  18. T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009). [CrossRef] [PubMed]
  19. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti- Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  20. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004). [CrossRef]
  21. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008). [CrossRef]
  22. M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007). [CrossRef] [PubMed]
  23. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002). [CrossRef] [PubMed]
  24. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004). [CrossRef] [PubMed]
  25. H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005). [CrossRef]
  26. H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B 80(2), 243–246 (2005). [CrossRef]
  27. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006). [CrossRef] [PubMed]
  28. A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010). [CrossRef] [PubMed]
  29. B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007). [CrossRef]
  30. M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002). [CrossRef]
  31. Z. D. Schultz, M. C. Gurau, and L. J. Richter, “Broadband coherent anti-Stokes Raman spectroscopy characterization of polymer thin films,” Appl. Spectrosc. 60(10), 1097–1102 (2006). [CrossRef] [PubMed]
  32. S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006). [CrossRef] [PubMed]
  33. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007). [CrossRef] [PubMed]
  34. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. W. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009). [CrossRef] [PubMed]
  35. Y. J. Lee, S. H. Parekh, Y. H. Kim, and M. T. Cicerone, “Optimized continuum from a photonic crystal fiber for broadband time-resolved coherent anti-Stokes Raman scattering,” Opt. Express 18(5), 4371–4379 (2010). [CrossRef] [PubMed]
  36. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004). [CrossRef] [PubMed]
  37. M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009). [CrossRef] [PubMed]
  38. Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156(1-2), 351–359 (2006). [CrossRef] [PubMed]
  39. M. H. Bland and N. A. Peppas, “Photopolymerized multifunctional (meth)acrylates as model polymers for dental applications,” Biomaterials 17(11), 1109–1114 (1996). [CrossRef] [PubMed]
  40. K. S. Anseth, C. N. Bowman, and N. A. Peppas, “Polymerization Kinetics and Volume Relaxation Behavior of Photopolymerized Multifunctional Monomers Producing Highly Cross-Linked Networks,” J. Polym. Sci. A 32(1), 139–147 (1994). [CrossRef]
  41. K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008). [CrossRef]
  42. R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003). [CrossRef]
  43. W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4005 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited