OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19232–19241

Structured light sheet fluorescence microscopy based on four beam interference

Ming Lei and Andreas Zumbusch  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 19232-19241 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1119 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 3D structured light sheet microscope using a four-faceted symmetric pyramid is presented. The sample is illuminated by the resulting four beam interference field. This approach combines advantages of standing wave and structured illumination microscopy. Examples of micrographs of fluorescently labeled Chinese hamster ovary (CHO) cells as well as of the compound eyes of drosophila are shown and the optical sectioning ability of our system is demonstrated. The capabilities and the limitations of the scheme are discussed.

© 2010 OSA

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(260.3160) Physical optics : Interference

ToC Category:

Original Manuscript: July 21, 2010
Revised Manuscript: August 13, 2010
Manuscript Accepted: August 16, 2010
Published: August 25, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Ming Lei and Andreas Zumbusch, "Structured light sheet fluorescence microscopy based on four beam interference," Opt. Express 18, 19232-19241 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  2. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008). [CrossRef] [PubMed]
  3. J. A. Buytaert and J. J. Dirckx, “Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution,” J. Biomed. Opt. 12(1), 014039 (2007). [CrossRef] [PubMed]
  4. E. Fuchs, J. S. Jaffe, R. A. Long, and F. Azam, “Thin laser light sheet microscope for microbial oceanography,” Opt. Express 10(2), 145–154 (2002). [PubMed]
  5. H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007). [CrossRef] [PubMed]
  6. T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57(5), 661–672 (2008). [CrossRef] [PubMed]
  7. P. J. Keller and E. H. K. Stelzer, “Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy,” Curr. Opin. Neurobiol. 18(6), 624–632 (2008). [CrossRef]
  8. J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, “Multi-view image fusion improves resolution in three-dimensional microscopy,” Opt. Express 15(13), 8029–8042 (2007). [CrossRef] [PubMed]
  9. P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4(4), 311–313 (2007). [PubMed]
  10. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366(6450), 44–48 (1993). [CrossRef] [PubMed]
  11. F. Lanni and B. Bailey, “Standing-wave excitation for fluorescence microscopy,” Trends Cell Biol. 4(7), 262–265 (1994). [CrossRef] [PubMed]
  12. R. Freimann, S. Pentz, and H. Hörler, “Development of a standing-wave fluorescence microscope with high nodal plane flatness,” J. Microsc. 187(3), 193–200 (1997). [CrossRef] [PubMed]
  13. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997). [CrossRef]
  14. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1-3), 1–4 (1998). [CrossRef]
  15. D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39(7), 808–818 (2008). [CrossRef] [PubMed]
  16. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000). [CrossRef] [PubMed]
  17. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  18. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008). [CrossRef] [PubMed]
  19. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008). [CrossRef] [PubMed]
  20. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009). [CrossRef] [PubMed]
  21. T. Breuninger, K. Greger, and E. H. K. Stelzer, “Lateral modulation boosts image quality in single plane illumination fluorescence microscopy,” Opt. Lett. 32(13), 1938–1940 (2007). [CrossRef] [PubMed]
  22. M. Lei, B. L. Yao, and R. A. Rupp, “Structuring by multi-beam interference using symmetric pyramids,” Opt. Express 14(12), 5803–5811 (2006). [CrossRef] [PubMed]
  23. S. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9(12), 2159–2166 (1992). [CrossRef]
  24. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. 195(1), 10–16 (1999). [CrossRef] [PubMed]
  25. L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008). [CrossRef] [PubMed]
  26. E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (751 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited