OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19249–19262

Optimal collimation of misaligned optical systems by concentering primary field aberrations

Hanshin Lee  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 19249-19262 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A collimation method of misaligned optical systems is proposed. The method is based on selectively nullifying main alignment-driven aberration components. This selective compensation is achieved by the optimal adjustment of chosen alignment parameters. It is shown that this optimal adjustment can be obtained by solving a linear matrix equation of the low-order alignment-driven terms of primary field aberrations. A significant result from the adjustment is to place the centers of the primary field aberrations, initially scattered over the field due to misalignment, to a desired common field location. This aberration concentering naturally results in recovery of image quality across the field of view. Error analyses and robustness tests show the method’s feasibility in efficient removal of alignment-driven aberrations in the face of measurement and model uncertainties. The extension of the method to the collimation of a misaligned system with higher-order alignment-driven aberrations is also shown.

© 2010 Optical Society of America

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(220.1140) Optical design and fabrication : Alignment
(220.4840) Optical design and fabrication : Testing

ToC Category:
Optical Design and Fabrication

Original Manuscript: April 1, 2010
Revised Manuscript: May 23, 2010
Manuscript Accepted: June 28, 2010
Published: August 26, 2010

Hanshin Lee, "Optimal collimation of misaligned optical systems by concentering primary field aberrations," Opt. Express 18, 19249-19262 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Jeong, G. N. Lawrence, and K. B. Nahm, “Auto-alignment of a three mirror off-axis telescope by reverse optimization and end-to-end aberration measurements,” Proc. SPIE 818, 419–430 (1987).
  2. M. A. Lundgren, and W. L. Wolfe, “Alignment of a three-mirror off-axis telescope by reverse optimization,” Opt. Eng. 30, 307–311 (1991). [CrossRef]
  3. W. Sutherland, Alignment and Number of Wavefront Sensors for VISTA, VIS-TRE-ATC-00112–0012 (Technical report, Astronomy Technology Center, UK, 2001).
  4. S. Kim, H.-S. Yang, Y.-W. Lee, and S.-W. Kim, “Merit function regression method for efficient alignment control of two-mirror optical systems,” Opt. Express 15, 5059–5068 (2007). [CrossRef] [PubMed]
  5. H. Lee, G. B. Dalton, I. A. J. Tosh, and S.-W. Kim, “Computer-guided alignment II: Optical system alignment using differential wavefront sampling,” Opt. Express 15, 15424–15437 (2007). [CrossRef] [PubMed]
  6. H. Lee, G. B. Dalton, I. A. J. Tosh, and S.-W. Kim, “Practical implementation of the complex wavefront modulation model for optical alignment,” Proc. SPIE 6617, 66170N (2007). [CrossRef]
  7. H. Lee, G. B. Dalton, I. A. J. Tosh, and S.-W. Kim, “Implementation of differential wavefront sampling in optical alignment of pupil-segmented telescope systems,” Proc. SPIE 7017, 70171T (2008). [CrossRef]
  8. H. N. Chapman, and D. W. Sweeney, “Rigorous method for compensation selection and alignment of microlithographic optical systems,” Proc. SPIE 3331, 102–113 (1998). [CrossRef]
  9. A. M. Hvisc, and J. H. Burge, “Alignment analysis of four-mirror spherical aberration correctors,” Proc. SPIE 7018, 701819 (2008). [CrossRef]
  10. D. O’Donoghue, South African Large Telescope, Observatory, 7935, South Africa (Personal communication, 2009).
  11. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1975). [CrossRef]
  12. R. V. Shack, and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” in Optical alignment, R. M. Shagam and W. C. Sweatt, eds., Proc. SPIE 251, 146–153 (1980).
  13. B. McLeod, “Collimation of Fast Wide-Field Telescopes,” Publ. Astron. Soc. Pac. 108, 217–219 (1996). [CrossRef]
  14. R. N. Wilson, and B. Delabre, “Concerning the Alignment of Modern Telescopes: Theory, Practice, and Tolerance Illustrated by the ESO NTT,” Publ. Astron. Soc. Pac. 109, 53–60 (1997). [CrossRef]
  15. L. Noethe, and S. Guisard, “Analytic expressions for field astigmatism in decentered two mirror telescopes and application to the collimation of the ESO VLT,” Acta Anat. Suppl. 144, 157–167 (2000).
  16. H. Lee, G. B. Dalton, I. A. J. Tosh, and S. Kim, “Computer-guided alignment I: Phase and amplitude modulation of the alignment-influenced wavefront,” Opt. Express 15, 3127–3139 (2007). [CrossRef] [PubMed]
  17. H. Lee, G. Dalton, I. Tosh, and S. Kim, “Computer-guided alignment III: Description of inter-element alignment effect in circular-pupil optical systems,” Opt. Express 16, 10992–11006 (2008). [CrossRef] [PubMed]
  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C 2nd ed. (Cambridge, 2002).
  19. G. D’Agostini, Bayesian Reasoning in Data Analysis (World Scientific, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited