OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19304–19313

Single-plane multiple speckle pattern phase retrieval using a deformable mirror

Percival F. Almoro, Jesper Glückstad, and Steen G. Hanson  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19304-19313 (2010)
http://dx.doi.org/10.1364/OE.18.019304


View Full Text Article

Enhanced HTML    Acrobat PDF (1818 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A design for a single-plane multiple speckle pattern phase retrieval technique using a deformable mirror (DM) is analyzed within the formalism of complex ABCD-matrices, facilitating its use in conjunction with dynamic wavefronts. The variable focal length DM positioned at a Fourier plane of a lens comprises the adaptive optical (AO) system that replaces the time-consuming axial displacements in the conventional free-space multiple plane setup. Compared with a spatial light modulator, a DM has a smooth continuous surface which avoids pixelation, pixel cross-talk and non-planarity issues. The calculated distances for the proposed AO-system are evaluated experimentally using the conventional free-space phase retrieval setup. Two distance ranges are investigated depending on whether the measurement planes satisfy the Nyquist detector sampling condition or not. It is shown numerically and experimentally that speckle patterns measured at the non-Nyquist range still yield good reconstructions. A DM with a surface height of 25 microns and an aperture diameter of 5.2 mm may be used to reconstruct spherical phase patterns with 50-micron fringe spacing.

© 2010 OSA

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(030.6140) Coherence and statistical optics : Speckle
(050.1960) Diffraction and gratings : Diffraction theory
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Image Processing

History
Original Manuscript: June 29, 2010
Revised Manuscript: August 15, 2010
Manuscript Accepted: August 20, 2010
Published: August 26, 2010

Citation
Percival F. Almoro, Jesper Glückstad, and Steen G. Hanson, "Single-plane multiple speckle pattern phase retrieval using a deformable mirror," Opt. Express 18, 19304-19313 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Williams, M. A. Pfeifer, I. A. Vartanyants, and I. K. Robinson, “Three-dimensional imaging of microstructure in gold nanocrystals,” Phys. Rev. Lett. 90(17), 175501 (2003). [CrossRef] [PubMed]
  2. J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin, “Hubble Space Telescope characterized by using phase-retrieval algorithms,” Appl. Opt. 32(10), 1747–1767 (1993). [CrossRef] [PubMed]
  3. P. F. Almoro, G. Pedrini, A. Anand, W. Osten, and S. G. Hanson, “Interferometric evaluation of angular displacements using phase retrieval,” Opt. Lett. 33(18), 2041–2043 (2008). [CrossRef] [PubMed]
  4. P. F. Almoro, P. N. Gundu, and S. G. Hanson, “Numerical correction of aberrations via phase retrieval with speckle illumination,” Opt. Lett. 34(4), 521–523 (2009). [CrossRef] [PubMed]
  5. P. F. Almoro, G. Pedrini, F. Zhang, A. M. S. Maallo, A. Anand, P. N. Gundu, W. Wang, A. Asundi, W. Osten, and S. G. Hanson, “Fault-tolerant characterization of phase objects using a speckle-based phase retrieval technique,” Int. J. Optomech. (to be published).
  6. P. F. Almoro, G. Pedrini, P. N. Gundu, W. Osten, and S. G. Hanson, “Phase microscopy of technical and biological samples through random phase modulation with a diffuser,” Opt. Lett. 35(7), 1028–1030 (2010). [CrossRef] [PubMed]
  7. J. Glückstad, and D. Palima, “Generalised Phase Contrast: Applications in Optics and Photonics,” Springer Series in Optical Sciences, Vol. 146, 310 pp (2009).
  8. K. A. Nugent, “X-ray noninterferometric phase imaging: a unified picture,” J. Opt. Soc. Am. A 24(2), 536–547 (2007). [CrossRef]
  9. S. Yang and H. Takajo, “Quantization error reduction in the measurement of Fourier intensity for phase retrieval,” Jpn. J. Appl. Phys. 43(No. 8B), 5747–5751 (2004). [CrossRef]
  10. W. O. Saxton, “Correction of artefacts in linear and nonlinear high resolution electron micrographs,” J. Microsc. Spectrosc. Electron. 5, 661–670 (1980).
  11. D. L. Misell, “An examination of an iterative method for the solution of the phase problem in optics and electron optics,” J. Phys. D Appl. Phys. 6(18), 2200–2216 (1973). [CrossRef]
  12. E. Kirkland, “Improved high resolution image processing of bright field electron micrographs: I. Theory,” Ultramicroscopy 15(3), 151–172 (1984). [CrossRef]
  13. G. R. Brady, M. Guizar-Sicairos, and J. R. Fienup, “Optical wavefront measurement using phase retrieval with transverse translation diversity,” Opt. Express 17(2), 624–639 (2009). [CrossRef] [PubMed]
  14. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004). [CrossRef]
  15. G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30(8), 833–835 (2005). [CrossRef] [PubMed]
  16. R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  17. N. Loomis, L. Waller, and G. Barbastathis, “High-Speed Phase Recovery Using Chromatic Transport of Intensity Computation in Graphics Processing Units,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA7.
  18. Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009). [CrossRef] [PubMed]
  19. L. Camacho, V. Micó, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18(7), 6755–6766 (2010). [CrossRef] [PubMed]
  20. C. Falldorf, M. Agour, C. v. Kopylow, and R. B. Bergmann, “Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system,” Appl. Opt. 49(10), 1826–1830 (2010). [CrossRef] [PubMed]
  21. C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48(20), 4003–4008 (2009). [CrossRef] [PubMed]
  22. F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75(4), 043805 (2007). [CrossRef]
  23. C. López-Quesada, J. Andilla, and E. Martín-Badosa, “Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor,” Appl. Opt. 48(6), 1084–1090 (2009). [CrossRef]
  24. H. T. Yura and S. G. Hanson, “Optical Beam Wave Propagation through Complex Optical Systems,” J. Opt. Soc. Am. A 4(10), 1931–1948 (1987). [CrossRef]
  25. A. M. S. Maallo, P. F. Almoro, and S. G. Hanson, “Quantization analysis of speckle intensity measurements for phase retrieval,” Appl. Opt. (to be published). [PubMed]
  26. http://en.wikipedia.org/wiki/Spread_spectrum

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited